欢迎登录材料期刊网

材料期刊网

高级检索

对系列In2O3∶Sn (ITO)薄膜样品分别实施了不同剂量的Sn+, Ag+ 和Mo+离子注入并将它们在250 ℃下进行了热处理.利用霍耳测量研究了原始样品及注入和退火前后各样品的电学特性.研究了ITO薄膜的电学参数受离子注入的种类及剂量的影响.实验证明不同种类的离子注入会不同程度地降低ITO的导电性能,但热处理的效应与之相反.3种金属中,Sn+离子对薄膜造成的注入损伤最小,而高价的钼离子可以替换铟离子的位置成为施主,当注入剂量为1×1015 cm-2时,经过Mo+离子注入和后续退火的ITO薄膜,载流子浓度提高了14%.

In2O3∶Sn (ITO) thin films were implanted by Sn+, Ag+ and Mo+ ions with diffe-rent dose of implantation and annealed in air at 250 ℃ for 1 h. The as-deposited sample and implanted ones before and after annealing were characterized by Hall measurement to investigate the dependencies of the electrical properties of ITO on the metal kind and dose of ion implantation. It is indicated that various ion implantation decrease the conductivities of ITO, while heat annealing has an opposite effect. Mo+ ion implantation supplies more carriers than Sn+ and Ag+. Sn+ ion implantation influences the mobility of ITO the least among the three kinds of ions. With a dose of 1×1015 cm-2, Mo+ implantation and the following heat annealing increase the carrier concentration of ITO by 14%.

参考文献

[1] Hamberg I,Granqvist C G.Evaporated Sn-doped In2O3 films:Basic optical properties and applications to energy efficient windows[J].J.Appl.Phys.,1986,160 (11):R123-R159.
[2] Li F,Tang H,Shinar J,et al.Effects of aquaregia treatment of indium-tin-oxide substrates on the behavior of double layered organic light-emitting diodes[J].Appl.Phys.Lett.,1997,70(20):2741-2743.
[3] Bender M,Trube J,Stollenwerk J.Characterization of a RF/DC-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films[J].Appl.Phys.A,1999,69(4):397-401.
[4] Tak Yoon-Heung,Kim Ki-Beom,Park Hyoung-Guen,et al.Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode[J].Thin Solid Films,2002,411(1):12-16.
[5] Lee H C,Seo J Y,Choi Y W,et al.The growth of indium-tin-oxide thin films on glass substrates using DC reactive magnetron sputtering[J].Vacuum,2004,72(3):269-276.
[6] Park J O,Lee J H,Kim J J,et al.Crystallization of indium tin oxide thin films prepared by RF magnetron sputtering without external heating[J].Thin Solid Films,2005,474(122):127-132.
[7] LI Xiaodong,ZHU Hongbing,CHU Jiabao,et al.Indium tin oxide films prepared by radio frequency magnetron sputtering under low vacuum level[J].Chin.J.Liquid Crystals and Displays,2007,22(5):553-559.
[8] JIANG Xishun,CAO Chunbin,SONG Xueping,et al.Effect of indium and tin oxidation on photoelectric behavior of ITO films[J].Chin.J.Liquid Crystals and Displays,2007,22(4):398-401.
[9] Miyakawa M,Ueda K,Hosono H.Carrier control in transparent semiconducting oxide thin films by ion implantation:MgIn2O4 and ZnO[J].Nuclear instruments and Methods in Physics Research B,2002,191(1-4):173-177.
[10] Conrad J R,Radtke J L,Dodd R A,et al.Plasma source ion-implantation technique for surface modification of materials[J].J.Appl.Phys.,1987,62(11):4591-4596.
[11] Jiang Yanyan,Man Jincang,Liu Hongzhu,et al.Effect of Pb+ Ion-implantation on the properties of ITO film on glass[J].Materials Review,1999,13(5):66-68.
[12] Masato Sawada,Masatoshi Higuchi.Electrical properties of ITO films prepared by tin ion implantation in In2O3 film[J].Thin Solid Films,1998,317(1-2):157-160.
[13] Zhang H X,Zhang X J,Zhou F S,et al.Mevva ion source for the application of material surface modification[J].Review of Scientific Instruments,1994,65(4):1295-1297.
[14] Luo Jin-sheng.Ion Implantation Physics[M].Shanghai:Shanghai Press of Science and Technology,1980:36-90.
[15] Wang W W,Diao X G,Wang Z,et al.Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films[J].Thin Solid Films,2005,491(1-2):54-60.
[16] Brown I G,Godechot X.Vacuum arc ion charge-state distributions[J].IEEE Trans Plasma Sci.,1991,19(5):713-717.
[17] Fan Zhixin,Sun Yicai,Chen Jiulin.Theoretical calculation of optimum doping content in oxide semiconductor transparent conductive films[J].Chin.J.Semiconductors,2001,22(11):1382-1386.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%