欢迎登录材料期刊网

材料期刊网

高级检索

我们最近报道了大剂量Al+注入原生GaN后对其光学性质的影响.表明Al+的注入可能产生了某种深能级电子陷阱,由于电子陷阱俘获导带电子,导致发光猝灭.而经一定条件的退火处理,可使深的电子陷阱发生变化,因而与缺陷间的跃迁相关的黄色荧光可得到一定程度的恢复.由于注入样品的电阻率高达1012 Ωcm, 因此不能用已有的常规方法测量.我们为此发展了一种称为"光增强电流谱"(PSCS)新方法,用于测量高阻样品中的深能级.研究发现,在经过快速退火处理的样品中,不能消除由于注入产生的准连续深能级带;而在某种常规条件退火的样品中,发现了5个位于导带下1.77eV, 1.24eV, 1.16eV, 0.90eV和0.86eV的深电子陷阱,它们都是Al+ 注入经退火后形成的稳定结构.实验发现退火使注入产生的准连续深能级带转变为独立的深能级结构,虽不能使GaN的本征发光得到恢复,但对黄色荧光的恢复是有利的.此研究有助于了解退火处理对离子注入的GaN的电学结构与发光产生的影响.PSCS的意义在于它适用于测量一切高阻半导体样品中与非辐射跃迁相联系的深陷阱能级,而不仅仅适用于测量Al+注入GaN产生的深陷阱能级.

参考文献

[1] Xu Xiaoliang.The electrical properties of n-type GaN[D].The University of Hong Kong, 1999,70-72.
[2] Xu Xiaoliang.The electrical properties of n-type GaN[D].The University of Hong Kong, 1999,108-120.
[3] Gotz W, Johnson N M,Amano H,et al. Deep level defects in n-type GaN[J].Appl. Phys. Lett., 1994,65(4): 463-465.
[4] Lee W I, Huang T C, Guo J D,et al. Effects of column III alkyl sources on deep levels in GaN grown by organalmetallic vapor phase epitaxy[J]. Appl.Phys.Lett., 1995,67(12):1721-1723.
[5] Hacke P, Nakayama H,Detchprohm T, et al. Deep levels in the upper band-gap region of lightly Mg-doped GaN[J]. Appl. Phys. Lett.,1996,68(10): 1362-1364.
[6] Gotz W, Johnson N M, Street R A, et al. Photoemission capacitance transient spectroscopy of n-type GaN[J]. Appl. Phys.Lett., 1995,66(11):1340-1342.
[7] Suzuki M,Uenoyama I. Strain effect on electronic and optical properties of GaN / AlGaN quantum-well lasers[J]. J. Appl. Phys., 1996,80:6868-6873.
[8] Balagurov L,Chong P J. Study of deep defects in n-GaN by the optical transmission method[J]. Appl. Phys. Lett., 1996,68(1):43-45.
[9] Qiu C H, Hoggatt C, Melton W,et al. Study of deep defect states in GaN films by photoconductivity measurement[J]. Appl. Phys. Lett.,1995,66(20):2712-2714.
[10] Ogino T,Aoki M. Mechanism of yellow luminescence in GaN[J]. Jpn. J. App1. Phys., 1980,19:2395-2400.
[11] Suski T, Perlim P, Teisseyre H, et al. Mechanism of yellow luminescence in GaN [J]. Appl. Phys.Lett., 1995,67(15):2188-2190.
[12] Neugebauer J,Van de Walle C G. Atomic geometry and electronic structure of native defects in GaN[J]. Phys. Rev. B, 1994,50(11):8067-8070.
[13] Baur J, Amano H, Hiramatsu K. Photoluminescence of residual transition metal impurities in GaN[J]. Appl. Phys. Lett., 1995,67(8): 1140-1142.
[14] Zolper J C , Shul R J, Baca A G Ion-implanted GaN junction field effect transistor[J]. Appl. Phys. Lett., 1996, 68(16):2273-2275.
[15] Rubin M, Newman N, Chan J S, et al. p-type gallium nitride by reactive ion- beam molecular beam epitaxy with ion implantation,diffusion, or coevaporation of Mg[J]. Appl. Phys.Lett., 1994, 64(1): 64-66.
[16] Pearton S J, Vartuli C B, Zolper J C, et al. Ion implantation doping and isolation of GaN [J]. Appl. Phys. Lett., 1995,67(10):1435-1437.
[17] Pankove J I,Hutchby J A. Photoluminescence of ion-implanted GaN [J]. J. Appl. Phys.,1976, 47(12):5387-5390.
[18] Nakamura S, Mukai T,Senoh M. Candela-class high brightness InGaN/AlGaN double heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994,64(13): 1687-1689.
[19] Mohammad S N, Salvador A A, Morkoc H. Emerging gallium nitride based devices [J]. Proc.IEEE,1995,83(10): 1306-1354.
[20] Xu Xiaoliang. The electrical properties of n-type GaN[D].The University of Hong Kong, 1999,109.
[21] 许小亮,刘洪图,何海燕,施朝淑. 退火对大剂量Al离子注入GaN发光特性的影响[J].液晶与显示,2002,17(2):84-91.
[22] Limmer W, Ritter W,Sauer R. Raman scattering in ion-implanted GaN[J]. Appl. Phys. Lett., 1998,72(20): 2589-2591.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%