采用洛氏硬度计(HRB)、电子拉伸试验机、透射电镜(TEM)、俄歇能谱(AES)等手段研究了不同时效状态下7A09合金的硬度、强度、应力腐蚀以及晶界附近的化学成分.结果表明:合金的硬度、强度均具有"双峰"特征;合金的应力腐蚀敏感性随时效时间的延长而降低;在第二时效峰状态时合金具有高强度低应力腐蚀敏感性.提出了"相变-Mg-H"复合理论,并用其解释了7A09合金第二时效峰状态时的高强度低应力腐蚀(SCC)敏感性机理.
参考文献
[1] | 潘复生;张丁非.铝合金及应用[M].北京:化学工业出版社,2006:59-118. |
[2] | 宋仁国.高强度铝合金的研究现状及发展趋势[J].材料导报,2000(01):20-21,34. |
[3] | Song R G;Zhang Q Z .Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm[J].Journal of Materials Processing Technology,2001,117:84. |
[4] | Song R G;Zhang Q Z .Heat treatment optimization for 7175 aluminum alloy by genetic algorithm[J].Materials Science and Engineering C,2001,C17:133. |
[5] | Robinson J S;Tanner D A .The influence of aluminum alloy quench sensitivity on the magnitude of heat treatment induced residual stress[J].Materials Science Forum,2006,524-525:305-310. |
[6] | Joachim Wloka;Theo Hack;Sannakaisa Virtanen .Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J].Corrosion Science,2007,49(03):1437-1449. |
[7] | 刘晓涛,崔建忠.Al-Zn-Mg-Cu系超高强铝合金的研究进展[J].材料导报,2005(03):47-51. |
[8] | Tanner DA;Robinson JS .Residual stress magnitudes and related properties in quenched aluminium alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2006(1):77-85. |
[9] | Imamura T .Current status and trend of applicable material technology for aerospace structure[J].Japanese Journal of Institute of Light Metals,1999,49(07):302-309. |
[10] | Lukasak D A;Hart R M .Strong aluminum alloy shaves airframe weight[J].Current Advances in Materials and Processes,1991,10:46. |
[11] | 阎大京.从7475铝合金的时效看Al-Zn-Mg-Cu系合金的强化[J].材料工程,1991(02):15. |
[12] | 宋仁国;张宝金;曾梅光 等.7175铝合金时效"双峰"应力腐蚀敏感性的研究[J].材料热处理学报,1996,17(02):51-54. |
[13] | Mears R B;Brown R H;Dix E H.A generalized theory of the stress corrosion of alloys[A].ASTM and AIME,1945:323. |
[14] | Sprowls D O;Brown R H.Stress corrosion mechanisms for aluminum alloys[A].National Association of Colleges and Employers,1969:466. |
[15] | Speidel M O.Current understanding of stress corrosion cracking growth in aluminum alloys[A].NATO,1971:289. |
[16] | 任广军,赵春英.铝合金应力腐蚀裂纹内的电化学行为[J].沈阳工业学院学报,2002(02):110-113. |
[17] | 刘继华,李荻,朱国伟,刘培英.7075铝合金应力腐蚀敏感性的SSRT和电化学测试研究[J].腐蚀与防护,2005(01):6-9. |
[18] | 宋仁国;曾梅光 .高强铝合金的氢脆[J].材料科学与工程,1995,13(01):63-65. |
[19] | Yue T M;Lan L J;Dong C F et al.Stress corrosion cracking behaviour of laser treated aluminium alloy 7075 using a slow strain rate test[J].Mater Sci & Technol,2005,21:961-965. |
[20] | 宋仁国;曾梅光;张宝金 等.7050铝合金晶界偏析与应力腐蚀、腐蚀疲劳行为的研究[J].中国腐蚀与防护学报,1996,16:1. |
[21] | Joshi A J .The relationship between solutionizing temperature and SCC susceptibility of 7075 aluminum alloys[J].Acto Metal,1981,12(08):81-85. |
[22] | Viswanadham R K;Sun T S;Green J A S .Grain boundary segregation in Al-Zn-Mg-implications to stress corrosion cracking[J].Metallurgical and Materials Transactions,1980,11A:151. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%