欢迎登录材料期刊网

材料期刊网

高级检索

着重综述了近年来自蔓延高温合成(SHS)技术一些新的研究进展,主要包括失重条件下的SHS、场激发SHS、SHS催化剂和载体、有机物的SHS、机械激发SHS和SHS纳米材料以及SHS产物耗散结构研究.

参考文献

[1] 张幸红 .自蔓延高温燃烧合成TiC-Ni梯度功能材料的研究[D].哈尔滨工业大学,1999.
[2] Moore J J;Feng H J .Combustion synthesis of advanced materials:part I: reaction parameters[J].Progress in Materials Science,1995,39:243-273.
[3] Varma Arvind;Lebrat J P .Combustion synthesis of advanced materials[J].Chemical Engineering Science,1992(47):2179-2194.
[4] Munir Z A .Synthesis of high temperature materials by self-propagating combustion methods[J].Ceramic Bulletin,1988,67(02):342-349.
[5] Munir Z A;Tamburini U A .Self-propagating exothermic reactions:the synthesis of high-temperature materials by combustion[J].Materials Science Reports,1989,3(03):277-358.
[6] 韩杰才;王华彬;杜善义 .自蔓延高温合成的理论与研究方法[J].材料科学与工程,1997,15(02):20-25.
[7] 傅正义.SHS技术研究进展--纪念SHS技术诞生三十周年[J].复合材料学报,2000(01):5-10.
[8] Merzhanov A G .Particulate materials and processes: advances in powder metallurgy & particulate materials[J].Princeton NJ,1992,6:341-368.
[9] 刘永合;殷声;赖和怡 .自蔓延高温合成碳化物陶瓷[J].粉末冶金技术,1999,17(02):130-137.
[10] H. C. Yi;T. C. Woodger .Combustion characteristics of the Ni3Ti-TiB2 Intermetallic matrix composites[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1998(4):867-876.
[11] 铃木良和;下川胜义;植田芳信 .微小重力场を利用した燃烧合成法によるTi-Ni化合物の创制NFDBAする研究[J].粉体おょび粉末冶金(日本),1997,44(06):523-529.
[12] R.Orru;G.Cao .Field-activated combustion synthesis of titanium aluminides[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,1999(4):1101-1108.
[13] Munir Z A .Investigation of field effects in combustion synthesis[R].NSF:9 910 599
[14] A. FENG;Z.A. MUNIR .The Effect of an Electric Field on Self-Sustaining Combustion Synthesis: Part I. Modeling Studies[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,1995(3):581-586.
[15] Feng A;Munir Z A .The effect of an electric field on self-sustaining combustion synthesis:part IIfield-assisted synthesis of β-SiC[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1995,26(06):587-593.
[16] Munir Z A .Investigation of field-activation in combustion synthesis:the use of field as a processing parameter[R].NSF:9 616 708
[17] Feng A;Munir Z A .Field-assisted self-propagating synthesis of β-SiC[J].Journal of Applied Physics,1994,76(03):1927-1928.
[18] Gedevanishvili S.;Munir ZA. .THE INFLUENCE OF AN ELECTRIC FIELD ON THE MECHANISM OF COMBUSTION SYNTHESIS OF TUNGSTEN SILICIDES[J].Journal of Materials Research,1995(10):2642-2647.
[19] 王华彬;韩杰才;杜善义 .自蔓延高温合成技术应用的新进展[J].功能材料,1997,28(02):115-121.
[20] Borovinskaya I P .Chemical classes of the SHS processes and materials[J].Pure and Applied Chemistry,1992,64(07):919-940.
[21] Pojman J A et al.Convective instabilities in traveling fronts of addition polymerization[J].Journal of Physical Chemistry,1992,96:7466-7472.
[22] Pojman J A .Traveling fronts of methacrylic acid polymerization[J].Journal of the American Chemical Society,1991,113:6284-6286.
[23] Istvan P. Nagy;Laszlo Sike;John A. Pojman .Thermochromic Composite Prepared via a Propagating Polymerization Front[J].Journal of the American Chemical Society,1995(12):3611-3612.
[24] 汪华林;李海林;吴东棣 .自蔓延高温合成的材料和工艺[J].功能材料,1996,27(03):206-212.
[25] 师昌绪.材料大辞典[M].北京:化学工业出版社,1994:692-693.
[26] F. Charlot;E. Gaffet;B. Zeghmati;F. Bernard;J.C. Niepce .Mechanically activated synthesis studied by X-ray diffraction in the Fe-Al system[J].Materials science and engineering,1999(1/2):279-288.
[27] Gauthier V;Bernard F;Gaffet E;Larpin JP;Josse C .Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1/2):117-128.
[28] 李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986:34-49.
[29] 许兴利;韩杰才;杜善义 .自蔓延高温合成理论研究与进展(一)[J].功能材料,1997,27(06):493-497.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%