欢迎登录材料期刊网

材料期刊网

高级检索

本文用密度泛函理论框架下的离散变分方法(DVM)研究了bccFe[100](001)刃型位错体系的电子结构,给出了结合能、原子间相互作用能以及电荷转移信息.结果表明:通过结合能的计算可确立用于电子结构研究的团簇平衡构型.此外,原子间相互作用能的计算以及差分电荷密度分析表明在位错芯的压缩区,沿滑移面的原子对之间的化学键较强,而垂直于滑移面的键较弱.反之在位错的膨胀区,沿滑移面的原子对之间的化学键较弱,而垂直于滑移面的键较强,预期与位错承受外力作用时的原子错动变化以及位错在晶体中的运动相关.

参考文献

[1] Gehlen P C;Rosenfield A R;Hahn G T .Structure of the〈100〉edge dislocation in iron[J].Journal of Applied Physics,1968,39:5246.
[2] Masude K et al.Calculation of core structure and core energy of 1/2〈111〉{110}and 1/2〈111〉{110}edge dislocations in a bcc transition metal:Moments Approach[J].Philosophical Magazine,1981,43:19.
[3] Wang Chongyu;Yue Yong et al.Electronic structure of edge dislocation core in iron[J].中国科学B辑(英文版),1993,36:1261.
[4] Kontsevoi O Yu;Gornostyrev Yu N et al.Electron localization on dislocations in metals:Real-space first-principles calculations[J].Physical Review B,2001,64:134103.
[5] Antoine Béré;Anna Serra Atomic .Structure of dislocation cores in GaN[J].Physical Review B,2002,65:205323.
[6] ELLIS D E;Painter G S .Screte variational method for the energy-band problem with general crystal potentials[J].Physical Review B,1970,2:2887.
[7] Baerends E J;Ellis D E et al.Self-consistent molecular Hartree-Fock-Slater calculations I:The Computational Procedure[J].Chemical Physics,1973,2:41.
[8] ELLIS D E;Benesh G A et al.Molecular cluster studies of binary alloys:LiAl[J].Physical Review B,1977,16:3308.
[9] ZHANG Bangwei;Ouyang Yifang et al.An anlytic MEAM model for all bcc transition metals[J].Physical Review B,1999,262:218.
[10] Hu Wangyu;Shu Xiaolin et al.Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentiahs[J].Computational Materials Science,2002,23:175.
[11] 冯端.金属物理学[M].北京:科学出版社,1999
[12] Wang C Y;Dou C Y;Zeng Y P.The interatomic potential in the transition metal Ni[A].中国沈阳,1989
[13] Wang C Y .Electronic structure of impurity-defect complexes in metals[J].Defect and Diffusion Forum,1995,125:79.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%