欢迎登录材料期刊网

材料期刊网

高级检索

为了从微观领域研究金属薄膜缺陷的形成和薄膜的初期生长模式,利用有限元法对金属薄膜沉积过程中的缺陷和生长模式进行了计算机模拟.以Pt原子为膜料粒子,采用刚性球入射到石墨基底,重点研究了在基底上形成的缺陷结果表明,在薄膜生长初期会形成"树桩"小岛,而当碳基底上沉积铂原子的能量值达到75 eV时,就有可能发生随机原子注入."树桩"小岛的形成使薄膜生长多为岛状生长机制,同时检验了有限元方法在微观领域中的合理性和适用性.

参考文献

[1] R. CAREL;C. V. THOMPSON;H. J. FROST .COMPUTER SIMULATION OF STRAIN ENERGY EFFECTS VS SURFACE AND INTERFACE ENERGY EFFECTS ON GRAIN GROWTH IN THIN FILMS[J].Acta materialia,1996(6):2479-2494.
[2] I. V. Tereshko;V. V. Glushchenko;A. M. Tereshko .Computer simulation of the defect structure formation in crystal lattices by low-energy ion irradiation[J].Computational Materials Science,2002(1/2):139-143.
[3] Robbemond A.;Thijsse BJ. .ION-BEAM ASSISTED DEPOSITION OF THIN MOLYBDENUM FILMS STUDIED BY MOLECULAR DYNAMICS SIMULATION[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,1997(0):273-277.
[4] Gilmore CM.;Sprague JA. .Molecular dynamics simulation of defect formation during energetic Cu deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2002(1/2):18-26.
[5] Gerstner E G;PAILTHORPE B A .Molecular dynamics simulation of thin film amorphous carbon growth[J].Journal of NON-CRYSTALLINE SOLIDS,1995,189:258-264.
[6] 邱成军,曹茂盛,朱静,杨慧静.纳米薄膜材料的研究进展[J].材料科学与工程,2001(04):132-137.
[7] LUGSCHEIDER E;VON HAYN G .Simulation of the film growth and film-substrate mixing during the sputter deposition process[J].Surface and Coatings Technology,1999,568:116-119.
[8] D. Marton;K. J. Boyd;J. W. Rabalais .Synergetic effects in ion beam energy and substrate temperature during hyperthermal particle film deposition[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,1998(3 Pt.1):1321-1326.
[9] Gilmore CM.;Sprague JA. .Molecular dynamics simulation of defect formation during energetic Cu deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2002(1/2):18-26.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%