欢迎登录材料期刊网

材料期刊网

高级检索

研究了含氢TCA合金的热变形行为,基于径向基函数(RBF)人工神经网络建立了含氢TCA合金热变形流变应力的预测模型,该模型的样本数据取自热压缩试验数据,模型的输入量为变形温度、应变速率、应变量和氢含量,输出量为流变应力.研究表明:随着变形温度的升高和应变速率的降低,合金的流变应力降低;随着氢含量的增多,流变应力先降低后升高;RBF网络有较好的非线性逼近能力,训练相关性系数为0.999,训练速度较快,网络测试结果的最大相对误差为11.8%.

参考文献

[1] 孙东立,韩潇,王清,吴涛,李中华.氢处理对钛合金组织性能的影响及其机理[J].宇航材料工艺,2005(03):11-16.
[2] O.N. Senkov;F.H. Froes .Thermohydrogen processing of titanium alloys[J].International journal of hydrogen energy,1999(6):565-576.
[3] TETER D F;I ROBERTSON M;BIRNBAUM H K .The effects of hydrogen on the deformation and fracture of β-titanium[J].Acta Materialia,2001,49:4313-4323.
[4] SUN Dongli;WANG Qing;HAN Xiao et al.Influence of hydrogen on tensile property of Ti-6Al-4V[J].Key Engineering Materials,2005,297-300:1133-1139.
[5] WANG Q;HAN X;LI Z H et al.Hydrogenation and its effect on behavior of hot deformation for Ti-6Al-4V alloy[J].Materials Forum,2005,29:318-322.
[6] 赖静,王清,孙东立.人工神经网络在材料研究中的应用[J].材料工程,2006(z1):458-462.
[7] Kasperkiewicz J.; .The applications of ANNs in certain materials-analysis problems[J].Journal of Materials Processing Technology,2000(1/3):74-79.
[8] S. Malinov;W. Sha;J. J. McKeown .Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network[J].Computational Materials Science,2001(3):375-394.
[9] 蔡安辉,孙国雄.基于人工神经网络的材料力学性能的预测与评估[J].铸造,2003(04):269-271.
[10] 李晓丽,陈胜晖,李淼泉.金属热态塑性成形过程中组织演变的模型化研究[J].中国机械工程,2004(01):86-90.
[11] J. McBride;S. Malinov;W. Sha .Modelling tensile properties of gamma-based titanium aluminides using artificial neural network[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):129-137.
[12] Q. Wang;T. Wu;D.L. Sun .Prediction of Flow Stress in Ti-6Al-4V Alloy with Hydrogen at High Temperature using Artificial Neural Network[J].Materials Science Forum,2007(Pt.4):3696-3701.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%