欢迎登录材料期刊网

材料期刊网

高级检索

用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子体基离子注入形成AIN/TiN改性层的成分分布及相结构.在此基础上测量了改性层的纳米硬度,并进行了摩擦磨损试验.结果表明,氮和钛都能有效地注入到铝合金里,后注入的元素对先注元素的含量和分布有重要影响.钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层.和未改性试样相比,所形成的AIN/TiN改性层纳米硬度及承载能力都提高5倍以上.在低滑动载荷下,摩擦系数减小70%以上,耐磨性提高近10倍,耐磨寿命提高了近6倍,粘着磨损程度显著减轻.随着载荷的增加,相应的耐磨性能有所降低.适当的改性层结构及其中分布的TiO2、TiN、TiAl3、Al2O3、AIN等相是性能改善的主要原因.

The disfribution of composition and microstructure of the AIN/TiN layer of aluminum alloy 2024 im-planted by Plasma Based Ion Implantation(PBⅡ) were characterized using X -ray Photoelectron Spectroscopy(XPS) and Glancing Angle X -ray Diffraction (GAXRD). XPS results show that N and Ti can be implantedinto 2024 effectively, the content of N presents a Gaussian - like distribution, and that of Ti decreases gradu-ally along the implanted direction from the surface. The post -implanted elements have great influence on thecontent and depth profile of the pre - implanted ones. The simultaneously implanted Ti and N can form asteady layer of Ti and N on the surface. In comparison with 2024, the AIN/TiN layer has remarkably improvedthe mechanical properties, of which both the nano - hardness and the load bearing capacity have in most cases increased over 5 times, the friction coefficient has been decreased more than 70% , wear life has been im-proved near to 6 times, and the wear resistance has enhanced approximately 10 times and the degree of adhe-sive wear has lightened markedly at low sliding loads. Nevertheless, the wear-resistant properties are reducedgradually with increasing the sliding load. The great improvement of the mechanical properties is mainly owingto the proper structure of the layer and the presence of TiO2, TiN, TiAl3, Al2O3, and AIN phases in it.

参考文献

[1] Guzman L;BONINI G;ADAMI M et al.Mechanical behaviour of nitrogen-implanted aluminum alloys[J].Surface and Coatings Technology,1996,83:284-289.
[2] MADAKSON PETER B .Effect of implantation dose on the hardness friction and wear of Sb-implanted Al[J].Journal of Applied Physics,1984,55(09):3308-3314.
[3] Lucas S;CHEVALLIER J .Nanohardness and transmission electron microscopy study of nitrogen-implanted aluminum[J].Surface and Coatings Technology,1994,65:128-132.
[4] XIA Li-fang;WANG Ri-zhi;MA Xin xin et al.Structure and wear behavior of nitrogen-implanted aluminum alloys[J].Journal of Vacuum Science and Technology B,1994,B12(02):931-934.
[5] Conrad J R;RADTKE J L;DODD R A et al.Plasma source ion-implantation technique for surface modification of materials[J].Journal of Applied Physics,1987,62(11):4591-4596.
[6] 夏立芳 .金属等离子体源离子注入方法和装置[P].CN 92113717.6,1992.
[7] Walter K C .Nitrogen plasma source ion implantation of aluminum[J].Journal of Vacuum Science and Technology B,1994,B12(02):945-950.
[8] 战再吉;马欣新;夏立芳 .铝合金等离子体淹没离子注入氮层组织及其耐磨性[J].材料研究学报,1998,12(05):546-548.
[9] GunzelR;WIESER E;RICHTER E et al.Plasma seuce ion implantation of oxygen and nitrogen in aluminum[J].Journal of Vacuum Science and Technology B,1994,B12(02):927-930.
[10] Moulder J F;STICKLE W F;SOBOL P E.Handbook of X - ray photoelectron spectroscopy[M].Minnesota: Physical Electronics Inc Press,1995
[11] 徐可为;白辰东;何家文 .Ti(C N)薄膜的复合硬度与本征硬度的研究[J].金属学报,1995,31(09):429-434.
[12] Ziegler J F;BIERSACK J P .[Q].,1985.
[13] 张通和;吴瑜光.离子注人表面优化技术[M].北京:冶金工业出版社,1993
[14] KESTWOOD A D;NOTIS M R .Ceramic substrates and packages for electronic applications[J].Advance in Ceramics,26:171-188.
[15] HEXiang-jun;YANG Si-Ze;TAO Kun et al.Investigation of the interface reactions of Ti thin flms with A1N Substrate[J].Journal of Materials Research,1997,12(03):846-851.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%