欢迎登录材料期刊网

材料期刊网

高级检索

采用53式7.62 mm弹道枪、7.62 mm穿燃弹入射铝合金多层板,弹速为824 m/s.利用光学显微镜观察靶板侵彻后的弹坑微观组织.结果表明.距贯穿初始位置约4.3 mm开始出现绝热剪切带,距贯穿初始位置约3 mm开始出现裂纹.裂纹均存在于面板中.在弹丸冲击下,出现于面板弹坑微观组织中的绝热剪切带与裂纹相比,是一种更有效的能量耗散方式.背板贯穿处边缘未见裂纹和绝热剪切带.中间填料层对裂纹扩展有明显的抑制作用.

参考文献

[1] 张自强;赵宝荣;张锐生.装甲防护技术基础[M].北京:兵器工业出版社,2002:49,114,157,168-172.
[2] Kumar K S;Singh D;Bhat T B .Studies on aluminum armor plates impacted by deformable and non-deformable projectiles[J].Materials Science Forum,2004,465-466:79-84.
[3] Kennedy C.;Murr LE. .Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: microstructural analysis and computer simulations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):131-143.
[4] Backman M E;Finnegan S A;Schulz J C.Scaling rules for adiabatic shear[A].,1986:675-687.
[5] Backman M E;Sewell R G S;Schulz J C.Stagnation cap formation on blunt projectiles penetrating metallic or brittle targets[A].,1986:821-833.
[6] Murr L E;Ayala A;Niou C-S .Microbands and shear-related microstrnctural phenomena associated with impact craters in 6061-T6 aluminum[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,216:69-79.
[7] B. Carter Hamilton;Ashok Saxena .Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J].Engineering Fracture Mechanics,1999(1):1-22.
[8] Kennedy C.;Murr LE. .Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: microstructural analysis and computer simulations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):131-143.
[9] Backman E M;Finnegan Stephen A;Schulz Jan C.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:675,131.
[10] Bckman E M;Swell R G S;Schulz J C.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:823.
[11] Rupert N L;Grace F I;Haung W et al.Energy partitioning and microstrnctural observations related to perforation of tita nium and steel targets[J].International Journal of Impact Engineering,1997,20:685.
[12] Zukas J A;Nicholas Swift.Impact dynamics[M].New York:wiley,1981
[13] Shockey Donald A.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:633.
[14] Chocron S;Grosh D J;Anderson C E.[A].San Antonio,Texas,USA,1999:769.
[15] Rao C V;Somayajulu K J;Balakrishna Bhat T.[A].Midrand South Affrica,1998:403.
[16] Lichtenberger A;Scharf M.[A].San Antonio,Texas,USA,1999:995.
[17] Rubin M B;Yarin A L .A Generalized formula for the penetration depth of deformable projectile[J].International Journal of Impact Engineering,2002,27:387.
[18] Borvik T;Langseth M;Hopperstad O S et al.Perforation of 12 mm thick steel plates by 20 mm diameter projectile with flat,hemispherical and conical noses part Ⅰ:experimental study[J].International Journal on Impact Engineering,2002,27:19.
[19] Papukutty K K;Madhu V;Ramanjaneyulu K.[A].India:New Delhi,2003:884.
[20] Kahhoff Jorg F;Andreas Burgel.[A].India:New Delhi,2003:190.
[21] Mescall J F.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:689.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%