采用53式7.62 mm弹道枪、7.62 mm穿燃弹入射铝合金多层板,弹速为824 m/s.利用光学显微镜观察靶板侵彻后的弹坑微观组织.结果表明.距贯穿初始位置约4.3 mm开始出现绝热剪切带,距贯穿初始位置约3 mm开始出现裂纹.裂纹均存在于面板中.在弹丸冲击下,出现于面板弹坑微观组织中的绝热剪切带与裂纹相比,是一种更有效的能量耗散方式.背板贯穿处边缘未见裂纹和绝热剪切带.中间填料层对裂纹扩展有明显的抑制作用.
参考文献
[1] | 张自强;赵宝荣;张锐生.装甲防护技术基础[M].北京:兵器工业出版社,2002:49,114,157,168-172. |
[2] | Kumar K S;Singh D;Bhat T B .Studies on aluminum armor plates impacted by deformable and non-deformable projectiles[J].Materials Science Forum,2004,465-466:79-84. |
[3] | Kennedy C.;Murr LE. .Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: microstructural analysis and computer simulations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):131-143. |
[4] | Backman M E;Finnegan S A;Schulz J C.Scaling rules for adiabatic shear[A].,1986:675-687. |
[5] | Backman M E;Sewell R G S;Schulz J C.Stagnation cap formation on blunt projectiles penetrating metallic or brittle targets[A].,1986:821-833. |
[6] | Murr L E;Ayala A;Niou C-S .Microbands and shear-related microstrnctural phenomena associated with impact craters in 6061-T6 aluminum[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,216:69-79. |
[7] | B. Carter Hamilton;Ashok Saxena .Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J].Engineering Fracture Mechanics,1999(1):1-22. |
[8] | Kennedy C.;Murr LE. .Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: microstructural analysis and computer simulations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):131-143. |
[9] | Backman E M;Finnegan Stephen A;Schulz Jan C.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:675,131. |
[10] | Bckman E M;Swell R G S;Schulz J C.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:823. |
[11] | Rupert N L;Grace F I;Haung W et al.Energy partitioning and microstrnctural observations related to perforation of tita nium and steel targets[J].International Journal of Impact Engineering,1997,20:685. |
[12] | Zukas J A;Nicholas Swift.Impact dynamics[M].New York:wiley,1981 |
[13] | Shockey Donald A.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:633. |
[14] | Chocron S;Grosh D J;Anderson C E.[A].San Antonio,Texas,USA,1999:769. |
[15] | Rao C V;Somayajulu K J;Balakrishna Bhat T.[A].Midrand South Affrica,1998:403. |
[16] | Lichtenberger A;Scharf M.[A].San Antonio,Texas,USA,1999:995. |
[17] | Rubin M B;Yarin A L .A Generalized formula for the penetration depth of deformable projectile[J].International Journal of Impact Engineering,2002,27:387. |
[18] | Borvik T;Langseth M;Hopperstad O S et al.Perforation of 12 mm thick steel plates by 20 mm diameter projectile with flat,hemispherical and conical noses part Ⅰ:experimental study[J].International Journal on Impact Engineering,2002,27:19. |
[19] | Papukutty K K;Madhu V;Ramanjaneyulu K.[A].India:New Delhi,2003:884. |
[20] | Kahhoff Jorg F;Andreas Burgel.[A].India:New Delhi,2003:190. |
[21] | Mescall J F.Metallurgical application of shock wave and high strain rate phenomena[M].New York,USA:Marcel Dekker,Inc,1986:689. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%