本文采用Timoshenko和Goodier处理固端边界条件的两种方法,探讨均布荷载作用下正交各向异性悬臂梁固端边界条件对位移的影响.根据Lekhniskii各向异性弹性理论应力解答,推导在第二种固端边界条件下的位移分量的解析解,并在文献已有部分结果的基础上求出第一种固端边界条件下的x方向位移解析解,然后得出两种固端边界条件下的位移差别.数值算例中将得出的位移解析解与有限元数值解进行比较,两者吻合良好,然后讨论材料各向异性程度、跨高比和材料弹性主轴方向对位移差别的影响.
参考文献
[1] | Hashin Z .Plane anisotropic beams[J].ASME Journal of Applied Mechanics,1967,34:257-262. |
[2] | Murakami H;Yamakawa J .On approximate solutions for the deformation of plane anisotropic beams[J].Composites Part B:Engineering,1996,27B:493-504. |
[3] | Y.M.Ghugal;R.P.Shimpi .A Review of Refined shear Deformation Theories for Isotropic and Anisotropic Laminated Beams[J].Journal of Reinforced Plastics and Composites,2001(3):255-272. |
[4] | Bhate SR;Nayak UN;Patki AV .Deformation of composite beam using refined theory[J].Computers & Structures,1995,54(03):541-546. |
[5] | Lekhnitskii SG.Anisotropic plates[M].New York:Gordon and Breach Science,1968 |
[6] | Timoshenko SP;Goodier JN.Theory of Elasticity[M].New York:McGraw-Hill Companies,Inc,1970 |
[7] | DING Hao-jiang,HUANG De-jin,WANG Hui-ming.Analytical solution for fixed-end beam subjected to uniform load[J].浙江大学学报A(英文版),2005(08):779-783. |
[8] | 黄德进,丁皓江,王惠明.均布载荷作用下正交各向异性固支梁的解析解[J].浙江大学学报(工学版),2006(03):511-514. |
[9] | Jones RM.Mechanics of composite materials[M].Washington:Scripta Book Company,1975 |
[10] | Osman Kilic;Alaattin Aktas;M. Husnu Dirikolu .An investigation of the effects of shear on the deflection of an orthotropic cantilever beam by the use of anisotropic elasticity theory[J].Composites science and technology,2001(14):2055-2061. |
[11] | S. M. Chern;M. E. Tuttle .On Displacement Fields in Orthotropic Laminates Containing an Elliptical Hole[J].Journal of Applied Mechanics,2000(3):527-539. |
[12] | Larry BL;Mahmood M .Two dimensional modeling of composite pined-joint failure[J].Journal of Composite Materials,1995,29:671-696. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%