针对超磁致伸缩驱动器(giant magnetostrictive actuator,GMA)具有磁滞非线性现象,以经典 Jiles-Atherton模型为基础,建立了包含偏置磁场强度和预压应力的 GMA 磁滞非线性模型,进行了数值仿真分析,得到了偏置磁场强度和预压应力对 GMA 磁化强度曲线和磁致伸缩应变曲线的影响规律。结果表明,偏置磁场强度对磁化强度曲线和磁致伸缩应变曲线的形状影响较大,调整偏置磁场强度的大小,可改变磁化强度曲线的线性区间,并能抑制或消除磁致伸缩应变曲线的倍频效应;预压应力对磁化强度曲线和磁致伸缩应变曲线的形状影响较小,施加不同的预压应力,可改变磁化强度曲线和磁致伸缩应变曲线的变化率。这与现有试验得到的结论相吻合,验证了所建磁滞非线性模型的合理性。
Aiming at the phenomenon on the hysteresis nonlinearity of giant magnetostrictive actuator (GMA), based on the classical Jiles-Atherton model,a hysteresis nonlinear model is establised containing bias magnetic field intensity and preloading stress of GMA.The law of GMA magnetization curves and magnetostrictive strain curves are obtained respectively about bias magnetic field intensity and preloading stress by numerical simula-tion analysis.Analysis results show that magnetization curve and magnetostrictive strain curve are influenced greatly by the bias magnetic field intensity at shape,and that the linear range of the magnetization curve can be changed and the frequency doubling effect of magnetostrictive strain curve can be restrained or eliminated by ad-j usting the size of the bias magnetic field intensity,and that the magnetization curve and magnetostrictive strain curve shape are affected by preloading stress,and that with the increase of preloading stress,the rate of change of magnetization curve and magnetostrictive strain curve are increasing and the amplitude were reduced slowly. The hysteresis nonlinearity model is reasonable beacuse these conclusions are consistent with the experiments.
参考文献
[1] | 王彬;屈稳太;邬义杰;刘孝亮;彭黄湖.超磁致伸缩材料磁滞建模方法国内外研究现状评述[J].功能材料,2013(16):2295-2300. |
[2] | 朱玉川;李跃松.超磁致伸缩执行器驱动的新型射流伺服阀[J].压电与声光,2010(4):574-577. |
[3] | 贾振元;王福吉;郭东明.功能材料驱动的微执行器及其关键技术[J].机械工程学报,2003(11):61-67. |
[4] | 刘慧芳;贾振元;王福吉;宗福才.超磁致伸缩执行器位移模型的参数辨识[J].机械工程学报,2011(15):115-120. |
[5] | 李欣欣;王文;陈戬恒;陈子辰.Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J].光学精密工程,2007(10):1558-1563. |
[6] | Marcelo J. Dapino;Ralph C. Smith;Alison B. Flatau.Structural magnetic strain model for magnetostrictive transducers[J].IEEE Transactions on Magnetics,20003(3):545-556. |
[7] | A. Nouicer;E. Nouicer;M. Mahtali;M. Feliachi.A Neural Network Modeling of Stress Behavior in Nonlinear Magnetostrictive Materials[J].Journal of Superconductivity and Novel Magnetism,20135(5):1489-1493. |
[8] | Jiles D.C.;Thoelke J.B..Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J].IEEE Transactions on Magnetics,19921(1):27-35. |
[9] | 贾振元;王福吉;张菊;郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报,2005(7):131-135. |
[10] | Bottauscio O.;Lovisolo A.;Roccato P. E.;Zucca M.;Sasso C.;Bonin R..Modeling and Experimental Analysis of Magnetostrictive Devices: From the Material Characterization to Their Dynamic Behavior[J].IEEE Transactions on Magnetics,200811 Pt.2(11 Pt.2):3009-3012. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%