采用“两步法”制备了TiO2-H2O 悬浮液,通过添加分散剂十二烷基硫酸钠(SDS)来提高悬浮液的稳定性.对不同 SDS 浓度下 TiO2-H2O 悬浮液的粒径大小、zeta电势、吸附量、颗粒浓度和导热系数进行了测试,研究了SDS对TiO2-H2O 悬浮液稳定性和导热性的影响.结果表明,添加适当浓度的分散剂能显著提高悬浮液的稳定性,从而增强其导热性能.在实验中,SDS浓度为0.35%(质量分数)时,0.7%(质量分数)的TiO2-H2O 悬浮液的稳定性和导热性最好.分散剂通过影响纳米颗粒的尺寸、吸附量和颗粒浓度,来影响悬浮液的导热系数,SDS 的吸附量越大,TiO2颗粒悬浮浓度越低,TiO2-H2O 悬浮液的导热系数越小.
TiO2-H2O suspensions were prepared by two-steps method,which used surfactant sodium dodecyl sulfate (SDS)to enhance the stability.By means of measurement of particle size,zeta potential,adsorbing ca-pacity,particle concentration and thermal conductivity at different SDS concentration,the effects of SDS on the stability and thermal conductivity of TiO2-H2O suspensions were studied.The experimental results show that there was an optimizing surfactant concentration corresponding to the best of stability and thermal conductivity of suspensions,in the present study,the 0.35wt% SDS can be regarded as an optimal concentration to obtain the best stability and the highest thermal conductivity for the 0.7wt% TiO2-H2O suspension.Surfactant could influence the particle size,adsorption quantity and particle concentration,thus influenced the thermal conduc-tivity of suspensions.The thermal conductivity of TiO2-H2O suspension would decrease with increased the ad-sorption quantity of SDS and decreased the concentration of TiO2 particles.
参考文献
[1] | Choi S U S.Enhancement thermal conductivity of fluids with nanoparticles[M].New York:ASME Publication,1995:99-105. |
[2] | J.M. Wu;JiyunZhao .A review of nanofluid heat transfer and critical heat flux enhancement-Research gap to engineering application[J].Progress in nuclear engergy,2013(Jul.):13-24. |
[3] | Masuda H;Ebata A;Teramae K et al.Alternation of ther-mal conductivity and viscosity of liquid by dispersing ultra-fine particles[J].Bussei(Japan),1993,4(04):227-233. |
[4] | S. Lee;S. U. -S. Choi;S. Li;J. A. Eastman .Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of heat transfer: Transactions of the ASME,1999(2):280-289. |
[5] | Sarit Kumar Das;Nandy Putra;Peter Thiesen;Wilfried Roetzel .Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids[J].Journal of heat transfer: Transactions of the ASME,2003(4):567-574. |
[6] | 宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000(04):466-470. |
[7] | 谢华清,王锦昌,奚同庚,刘岩.SiC纳米粉体悬浮液导热系数研究[J].硅酸盐学报,2001(04):361-364. |
[8] | 李新芳,朱冬生,王先菊,汪南,李华,杨硕.Cu-水纳米流体的分散行为及导热性能研究[J].功能材料,2008(01):162-165,169. |
[9] | 李东东,李金凯,赵蔚琳.SiO2-水纳米流体稳定性及导热性能[J].济南大学学报(自然科学版),2010(03):247-250. |
[10] | Zhang X;Gu H;Fujii M .Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles[J].Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics,2007(6):593-599. |
[11] | 凌智勇,张体峰,丁建宁,程广贵,邹涛,朱爱军.Cu-水纳米流体的稳定性及其粘度的实验研究[J].功能材料,2011(z3):481-483. |
[12] | 王先菊;朱冬生;李新芳 等.pH 对水合 Al2 O3 纳米流体的稳定性和导热性的影响[J].功能材料,2008,38(增刊):162-169. |
[13] | 宋影伟,刘福春,韩恩厚.纳米二氧化钛水性分散体性能研究[J].功能材料,2006(03):459-461. |
[14] | Mingzheng, Z.;Guodong, X.;Jian, L.;Lei, C.;Lijun, Z. .Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions[J].Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics,2012(1):22-29. |
[15] | 李艳娇,周敬恩,刘长江,王佑君.BN/EG纳米流体的制备及稳定性研究[J].功能材料,2012(07):843-847. |
[16] | Gupte S K;Avani S G;Hug P .Role of micro-conven-tion due to non-affine motion of particles in a mono-dis-perse suspension[J].International Journal of Heat and Mass Transfer,1995,38(16):2945-2958. |
[17] | Weerapun Duangthongsuk;Somchai Wongwises .Measurement of temperature-dependent thermal conductivity and viscosity of TiO_2-water nanofluids[J].Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics,2009(4):706-714. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%