欢迎登录材料期刊网

材料期刊网

高级检索

采用真空熔炼和热压烧结技术制备了 K 和Al 共掺杂 Bi2 Te2.7 Se0.3热电材料.利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)对样品的物相结构和表面形貌进行了表征. XRD 分析结果表明,K0.04 Bi1.96-x Alx Te2.7 Se0.3块体材料的 XRD 图谱与 Bi2 Te2.7 Se0.3的 XRD 图谱对应一致,SEM 形貌表明材料组织致密且有层状结构特征.K0.04 Bi1.92-Al0.04 Te2.7 Se0.3合金提高了材料的 Seebeck 系数,K0.04 Bi1.88 Al0.08 Te2.7 Se0.3和 K0.04 Bi1.84 Al0.12 Te2.7 Se0.3大幅度提高了材料的电导率,通过 K 和 Al 部分替代 Bi,使材料的热导率有不同程度的减小,在300~500 K 温度范围内,K 和 Al共掺杂均较大幅度地提高了 Bi2 Te2.7 Se0.3的热电优值.

K and Al co-doped Bi2 Te2 .7 Se0.3 thermoelectric materials were synthesized by vacuum melting and hot pressing method.Phase structure and surface morphology were characterized via X-ray diffraction (XRD),scan-ning electron microscope (SEM).XRD results indicate that all the characteristic peaks of the bulk K0.04 Bi1 .9 6 -x Alx Te2 .7 Se0.3 can be indexed into rhombohedral Bi2 Te2 .7 Se0.3 .SEM analysis shows that the bulk samples are compact with the laminated structure.Seebeck coefficients of K0.04 Bi1 .92 Al0.04 Te2 .7 Se0.3 alloy are improved.K0.04 Bi1 .88 Al0.08 Te2 .7 Se0.3 and K0.04 Bi1 .84 Al0.1 2 Te2 .7 Se0.3 samples results in substantial increase in electrical conductivity. Thermal conductivity can be reduced by partial substituting Bi with K and Al.K and Al co-doping can effective-ly enhance the thermoelectric figure of merit of Bi2 Te2 .7 Se0.3 alloy from 300 to 500 K.

参考文献

[1] DiSalvo F J .Thermoelectric cooling and power generation[J].SCIENCE,1999,285(5428):703-706.
[2] Lon E. Bell .Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J].Science,2008(5895):1457-1461.
[3] Bed Poudel;Qing Hao;Yi Ma;Yucheng Lan;Austin Minnich;Bo Yu;Xiao Yan;Dezhi Wang;Andrew Muto;Daryoosh Vashaee .High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J].Science,2008(5876):634-638.
[4] Cao Y Q;Zhao X B;Zhu T J et al.Syntheses and ther-moelectric properties of Bi2 Te3/Sb2 Te3 bulk nanocompos-ites with laminated nanostructure[J].Applied Physics Letters,2008,92(143106):1-3.
[5] Fan XA;Yang JY;Chen RG;Yun HS;Zhu W;Bao SQ;Duan XK .Characterization and thermoelectric properties of p-type 25%Bi2Te3-75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2006(4):740-745.
[6] Li Y L;Jiang J;Xu G J et al.Synthesis of micro/nano-structured p-type Bi0.4 Sb1.6 Te3 and its thermoelectric properties[J].Journal of Alloys and Compounds,2009,480(2):954-957.
[7] Xiaozong Chen,Leifeng Liu,Yuan Dong,Lianjun Wang,Lidong Chen,Wan Jiang.Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding[J].自然科学进展(英文版),2012(03):201-206.
[8] 樊文浩,陈少平,焦媛媛,陈瑞雪,孟庆森.电场对Bi-Sb-Te热电材料微观结构及其性能影响[J].功能材料,2012(19):2720-2723.
[9] Xie W J;Tang X F;Yan Y G et al.Tritt,Unique nano-structures and enhanced thermoelectric performance of melt-spun BiSbTe alloys[J].Applied Physics Letters,2009,94(10):1-3.
[10] Chen H;Liu D W;Zhang B P et al.Enhanced thermo-electric properties obtained by compositional optimiza-tion in P-type Bix Sb2-x Te3 fabricated by mechanical allo-ying and spark plasma sintering[J].J Electronic Materi-als,2011,40:942-945.
[11] Jun Jiang;Lidong Chen;Shengqiang Bai .Thermoelectric performance of p-type Bi-Sb-Te materials prepared by spark plasma sintering[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2005(1/2):208-211.
[12] Li D;Sun R R;Qin X Y .Improving thermoelectric properties of p-type Bi2 Te3-based alloys by spark plasma sintering[J].Progress in Natural Science:Materials In-ternational,2011,21(4):336-340.
[13] 王晓琳,姜洪义,任卫.SPS法制备Bi2Te3基热电合金的热电性能[J].功能材料,2009(01):40-42.
[14] Fengrong Yu;Bo Xu;Jianjun Zhang;Dongli Yu;Julong He;Zhongyuan Liu;Yongjun Tian .Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi_2Te_3 bulks[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2012(6):1432-1437.
[15] André, C.;Vasilevskiy, D.;Turenne, S.;Masut, R.A. .Increase in the density of states in n-type extruded (Bi _((1-x))Sb_x)_2(Te_((1-y))Se _y)_3 thermoelectric alloys[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2011(23):235401-1-235401-9.
[16] Soni, A.;Yanyuan, Z.;Ligen, Y.;Aik, M.K.K.;Dresselhaus, M.S.;Xiong, Q. .Enhanced thermoelectric properties of solution grown Bi _2Te _(3-x)Se _x nanoplatelet composites[J].Nano letters,2012(3):1203-1209.
[17] Gothard N;Ji X;He J;Tritta TM .Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites[J].Journal of Applied Physics,2008(5):054314-1-054314-4-0.
[18] Chen C;Zhang B P;Liu D W et al.Thermoelectric properties of Cuy Bix Sb2-x-y Te3 alloys fabricated by me-chanical alloying and spark plasma sintering[J].Interme-tallics,2012,25:131-135.
[19] Cui J L;Xue H F;Xiu W J et al.Crystal structure analysis and thermoelectric properties of p-type pseudo-binary(Al2 Te3)x-(Bi0.5 Sb1.5 Te3)1-x alloys prepared by spark plasma sintering[J].Journal of Alloys and Com-pounds,2008,460(1-2):426-431.
[20] O. Ceyda Yelgel;G. P. Srivastava .Thermoelectric properties of n-type Bi_2(Te_(0.85)Se_(0.15))_3 single crystals doped with CuBr and SbI_3[J].Physical review, B. Condensed matter and materials physics,2012(12):125207:1-125207:11.
[21] Duan XK;Yang JY;Xiao CJ;Zhu W .Structural and thermoelectric properties of Ag-doped Bi-2(Te0.95Se0.05)(3) thin films prepared by flash evaporation[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2007(19):5971-5974.
[22] Chung D Y;lordanidis L;Choi K S et al.Complex chalcogenides as thermoelectric materials:a solid state chemistry approach[J].Bullietin of the Korean Chemi-cal Society,1998,19:1283-1293.
[23] B.L.Du;H.Li;X.F.Tang .Enhanced thermoelectric performance in Na-doped p-type nonstoichiometric AgSbTe_2 compound[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(5):2039-2043.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%