石墨烯由于其独特的电学特性受到关注,工艺的研究促使石墨烯材料的实际应用。着重于石墨烯场效应管关键工艺(目标衬底的预处理、石墨烯的转移、金属沉积、石墨烯刻蚀与退火)的优化。通过实验发现,衬底上硅醇基的密度以及碳氢化合物分子的大小对器件的性能有很大的影响;与热蒸发方式相比,溅射会对石墨烯引入更多的缺陷,降低器件性能;金属上石墨烯的接触电阻率为1.1×104Ω·μm,而金属下石墨烯的电阻率为2.4×105Ω·μm;应用射频和微波等离子体系统对石墨烯进行刻蚀,微波等离子体会造成石墨烯上的光刻胶碳化,使得光刻胶很难用丙酮去除;器件制备完成后,样品需要在(H2/Ar)还原性气氛中退火,以除去吸附在石墨烯表面的杂质,提高器件的性能。
The process used to fabricate graphene field effect transistors (FETs)was optimized.Pretreatment of the targeted substrate,graphene transfer,metal deposition,graphene etching and annealing are all important factors in the fabrication process.The density of silanol groups and the size of the hydrocarbon on the surface of a substrate also influence the properties of the resulting devices.Metal deposition also can induce defects in gra-phene.Compared with thermal evaporation,sputtering induces a large amount of disorder in graphene,which degrades its properties.In addition,the method of graphene transfer,on-the-metal or under-the-metal gra-phene,influences its properties.In our experiments,the contact resistivity of on-the-metal graphene was 1.1× 104 Ω·μm,while that of under-the-metal graphene was 2.4×105 Ω·μm.RF and microwave plasma systems were used to etch graphene.Microwave plasma etching caused the photoresist on graphene to carbonize,and made it very difficult to remove with acetone.After fabrication,samples were annealed in a reducing (H2/Ar) atmosphere to remove residues adsorbed on the graphene surface and improve device properties.
参考文献
[1] | Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN .Superior thermal conductivity of single-layer graphene[J].Nano letters,2008(3):902-907. |
[2] | Bolotin, KI;Sikes, KJ;Jiang, Z;Klima, M;Fudenberg, G;Hone, J;Kim, P;Stormer, HL .Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008(9/10):351-355. |
[3] | Frank IW;Tanenbaum DM;Van der Zande AM;McEuen PL .Mechanical properties of suspended graphene sheets[J].Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena,2007(6):2558-2561. |
[4] | Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666-669. |
[5] | Max C. Lemme;Tim J. Echtermeyer;Matthias Baus;Heinrich Kurz .A Graphene Field-Effect Device[J].IEEE Electron Device Letters,2007(4):282-284. |
[6] | Ishigami M;Chen JH;Cullen WG;Fuhrer MS;Williams ED .Atomic structure of graphene on SiO2[J].Nano letters,2007(6):1643-1648. |
[7] | F.SCHEDIN;A.K.GEIM;S.V.MOROZOV .Detection of individual gas molecules adsorbed on graphene[J].Nature materials,2007(9):652-655. |
[8] | L. A. Ponomarenko;R. Yang;T. M. Mohiuddin;M. I. Katsnelson;K. S. Novoselov;S. V. Morozov;A. A. Zhukov;F. Schedin;E.W. Hill;A.K. Geim .Effect of a High-κ Environment on Charge Carrier Mobility in Graphene[J].Physical review letters,2009(20):209601.1. |
[9] | Palik E D.Handbook of optical constants of solids[M].New York:Academic Press,Inc,1985 |
[10] | Pauling L.The nature of the chemical bond[M].Ithaca,New York:Cornell University Press,1960 |
[11] | P. Blake;E. W. Hill;A. H. Castro Neto;K. S. Novoselov;D. Jiang;R. Yang;T. J. Booth;A. K. Geim .Making graphene visible[J].Applied physics letters,2007(6):063124-1-063124-3-0. |
[12] | Anders H.Thin films in optics[M].London:Focal Press,1967 |
[13] | Adam, S;Das Sarma, S .Transport in suspended graphene[J].Solid State Communications,2008(9/10):356-360. |
[14] | Hwang EH;Adam S;Das Sarma S .Carrier transport in two-dimensional graphene layers[J].Physical review letters,2007(18):6806-1-6806-4-0. |
[15] | S. S. Sabri;P. L. Levesque;C. M. Aguirre;J. Guillemette;R. Martel;T. Szkopek .Graphene field effect transistors with parylene gate dielectric[J].Applied physics letters,2009(24):242104-1-242104-3. |
[16] | Lafkioti, M;Krauss, B;Lohmann, T;Zschieschang, U;Klauk, H;von Klitzing, K;Smet, JH .Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions[J].Nano letters,2010(4):1149-1153. |
[17] | X. Hong;K. Zou;J. Zhu .Quantum scattering time and its implications on scattering sources in graphene[J].Physical review, B. Condensed matter and materials physics,2009(24):241415:1-241415:4. |
[18] | Sneh O;George S M .Thermal stability of hydroxyl groups on a well-defined silica surface[J].The Journal of Physical Chemistry,1995,99(13):4639-4647. |
[19] | Hirashita N;Tokitoh S;Uchida H .Thermal desorption and infrared studies of plasma-enhanced chemical vapor deposited SiO films with tetraethylorthosilicate[J].Japanese Journal of Applied Physics,1993,32(4):1787-1793. |
[20] | Qiu X P;Shin Y J;Niu J et al.Disorder-free sputte-ring method on graphene[J].AIP Advances,2012,2(3):032121. |
[21] | Jian-Hao Chen;Jian-Hao Chen;W.G. Cullen;C. Jang;M.S. Fuhrer;E.D. Williams .Defect Scattering in Graphene[J].Physical review letters,2009(23):84-87. |
[22] | De Renzi V;Rousseau R;Marchetto D;Biagi R;Scandolo S;del Pennino U .Metal work-function changes induced by organic adsorbates: A combined experimental and theoretical study[J].Physical review letters,2005(4):6804-1-6804-4-0. |
[23] | Noejung Park;Bum-Kyu Kim;Jeong-O Lee;Ju-Jin Kim .Influence of metal work function on the position of the Dirac point of graphene field-effect transistors[J].Applied physics letters,2009(24):243105-1-243105-3. |
[24] | Khatami, Y.;Li, H.;Xu, C.;Banerjee, K. .Metal-to-Multilayer-Graphene Contact—Part I: Contact Resistance Modeling[J].IEEE Transactions on Electron Devices,2012(9):2444-2452. |
[25] | Woong Sun Lim;Yi Yeon Kim;Hyeongkeun Kim .Atomic layer etching of graphene for full graphene device fabrication[J].Carbon: An International Journal Sponsored by the American Carbon Society,2012(2):429-435. |
[26] | Chen JH;Jang C;Xiao SD;Ishigami M;Fuhrer MS .Intrinsic and extrinsic performance limits of graphene devices on SiO2[J].Nature nanotechnology,2008(4):206-209. |
[27] | Han MY;Ozyilmaz B;Zhang YB;Kim P .Energy band-gap engineering of graphene nanoribbons[J].Physical review letters,2007(20):6805-1-6805-4-0. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%