以无水氯化铝和异丙醚为原料,采用非水解溶胶-凝胶法制备出氧化铝凝胶。其经800℃煅烧才析出少量γ-Al2 O3晶体,γ-Al2 O3向α-Al2 O3晶型转变在1200℃附近,经900℃煅烧后比表面积仍高达145m2/g,具有介孔结构。以该高活性氧化铝凝胶作为铝源,采用碳热还原氮化工艺合成氮化铝粉体。结果表明,氧化铝凝胶经300℃预煅烧,按n(C)/n(Al)=7.8与碳黑混合,在流量80mL/min 高纯 N2中,于1450℃还原氮化2h便可合成出平均粒径在400nm 的高纯六方相AlN粉体。
The alumina xerogel was prepared by non-hydrolytic sol-gel method using anhydrous aluminium tri-chloride with isopropyl ether as raw materials.After the xerogel was calcined at 800℃,the phase ofγ-Al2 O3 began to crystallize from the amorphous phase,and then converted toα-Al2 O3 near 1200℃.The smaple kept a high specific surface area of 145m2/g to about 900℃,and possessed the mesoporous structure.Using the alu-mina xerogel as the aluminum source,aluminum nitride ultrafine powder was synthesized by the carbon thermal reduction nitridation process.The resluts showed that when the alumina xerogel was pre-calcinated at 300℃, the C/Al molar ratio amount of the carbon was 7.8,the flow rate of nitrogen was 80mL/min,the synthesis temperture was 1450℃ and the soaking time was 2h,the high purity hexagonal phase aluminum nitride powder with the average size of about 400nm could be obtained.
参考文献
[1] | 秦明礼,曲选辉,林健凉,肖平安,祝宝军,汤春峰.氮化铝陶瓷研究和发展[J].稀有金属材料与工程,2002(01):8-12. |
[2] | 马超,陈光德,苑进社,刘菲菲.直接氮化法制备氮化铝粉末的结构特性[J].功能材料,2011(09):1599-1600,1605. |
[3] | Huabin Wang;Jiecai Han;Zhiqiang Li .Effect of additives on self-propagating high-temperature synthesis of AlN[J].Journal of the European Ceramic Society,2001(12):2193-2198. |
[4] | T. Suehiro;J. Tatami;T. Meguro;S. Matsuo;K. Komeya .Morphology-retaining synthesis of A1N particles by gas reduction-nitridation[J].Materials Letters,2002(4):910-913. |
[5] | 赵志江,林生,余寒峰,吴马辉,孙旭东.碳热还原氮化法制备AlN超细粉体新工艺[J].机械工程材料,2009(02):49-51,66. |
[6] | 秦明礼;曲选辉;林健凉 等.溶胶-凝胶工艺制备氮化铝陶瓷超细粉末[J].粉末冶金材料科学与工程,2005,15(12):1974-1979. |
[7] | 宋扬,汪长安,黄勇.纳米晶氮化铝粉料的制备[J].稀有金属材料与工程,2005(z1):147-150. |
[8] | Chowdhury SA;Maiti HS;Biswas S .Synthesis of spherical Al2O3 and AlN powder from C@Al2O3 composite powder[J].Journal of Materials Science,2006(15):4699-4705. |
[9] | Corriu R J P;Lectercq D;Mutin P H et al.Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process[J].Chemistry of Materials,1992,4(05):961-963. |
[10] | Acosta S;Corriu R J P;Leclercq D et al.Preparation of alumina gels by a non-hydrolytic sol-gel processing method[J].Journal of Non-Crystalline Solids,1994,170(03):234-242. |
[11] | Acosta S;Arnal P;Corriu R J P.A general non-hydrolytic sol-gel route to oxides[A].San Francisco,CA,USA,1994 |
[12] | Hazan Y D;Shter G E;Cohen Y et al.The evolution of microstructure in nonhydrolytic alumina xerogels[J].Journal of Sol-Gel Science and Technology,1999,14(03):233-247. |
[13] | Jianfeng Yao;Huanting Wang;Xinyi Zhang;Wei Zhu;Jinping Wei;Yi-Bing Cheng .Role of Pores in the Carbothermal Reduction of Carbon-Silica Nanocomposites into Silicon Carbide Nanostructures[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(2):636-641. |
[14] | Jung W S .Comparison of the carbothermal reduction and nitridation reactivity amongγ-,δ-andα-Al2 O3[J].Journal of the Ceramic Society of Japan,2010,118(1374):132-136. |
[15] | Kim J Y;Kumta P N;Phillips B L et al.A versatile chemical strategy for ultrafine AlN and Al-O-N powders[J].The Journal of Physical Chemistry(B)Materials Surfaces Interfaces & Physical,2000,104(33):7895-7907. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%