欢迎登录材料期刊网

材料期刊网

高级检索

研究了JIS-SUJ2轴承钢的超高周疲劳行为及高压气相热充氢对疲劳性能的影响.结果表明,高压气相热充氢后疲劳性能明显降低,裂纹源周围“GBF”区的颗粒状特征变浅甚至消失.断口上裂纹源处缺陷尺寸及分布对疲劳寿命没有影响,疲劳寿命随着“GBF”与夹杂物尺寸比的增加而增加.充氢前后裂纹源边缘的应力强度因子范围均近似正比于裂纹尺寸的1/3次方,“GBF”裂纹扩展的门槛值正比于“GBF”尺寸的1/6次方.高压气相热充氢明显提高了氢致附加应力强度因子,估算的“GBF”裂纹尺寸的极限值与实验值能够较好地吻合.

参考文献

[1] 邵红红,蒋小燕,张道军.40CrNiMoA钢不同微观组织超声疲劳寿命研究[J].材料工程,2008(05):24-28.
[2] 胡燕慧,钟群鹏,张峥,韩邦成.超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J].材料工程,2011(02):26-30.
[3] 洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009(07):769-780.
[4] 周承恩,谢季佳,洪友士.超高周疲劳研究现状及展望[J].机械强度,2004(05):526-533.
[5] 王清远,刘永杰.结构金属材料超高周疲劳破坏行为[J].固体力学学报,2010(05):496-503.
[6] 胡燕慧,张峥,钟群鹏,韩邦成.金属材料超高周疲劳研究进展[J].机械强度,2009(06):979-985.
[7] 鲁连涛,张卫华.金属材料超高周疲劳研究综述[J].机械强度,2005(03):388-394.
[8] 李守新;翁宇庆;惠卫军.高强度钢超高周疲劳性能非金属夹杂物的影响[M].北京:冶金工业出版社,2010:1-6.
[9] STANZL S E;TSCHEGG E K;MAYER H .Lifetime measurements for random loading in the very high cycle fatigue range[J].International Journal of Fatigue,1986,8(4):195-200.
[10] Y. MURAKAMI;N.N. YOKOYAMA;J. NAGATA .Mechanism of fatigue failure in ultralong life regime[J].Fatigue & Fracture of Engineering Materials and Structures,2002(8/9):735-746.
[11] BATHIAS C;PARIS P C.Gigacycle fatigue in mechanical practice[M].New York:MarcelDekker,2005:1-7.
[12] Q. Y. Wang;J. Y. Berard;A. Dubarre;G. Baudry;S. Rathery;C. Bathias .Gigacycle fatigue of ferrous alloys[J].Fatigue & Fracture of Engineering Materials and Structures,1999(8):667-672.
[13] Z.G. Yang;S.X. Li;J.M. Zhang .The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime[J].Acta materialia,2004(18):5235-5241.
[14] MURAKAMI Y;NOMOTO T;UEDA T et al.On the mechanism of fatigue failure in the superlong life regime (Nf》107 cycles).Part Ⅰ:Influence of hydrogen trapped by inclusions[J].Fatigue Fracture Engineering Materials Structure,2000,23(11):893-902.
[15] MURAKAMI Y;NOMOTO T;UEDA T et al.On the mechanism of fatigue failure in the superlong life regime (Nf》107 cycles).Part Ⅱ:A fractographic investigation[J].Fatigue Fracture Engineering Materials Structure,2000,23(11):903-910.
[16] T. SAKAI;Y. SATO;N. OGUMA .Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J].Fatigue & Fracture of Engineering Materials and Structures,2002(8/9):765-773.
[17] K. SHIOZAWA;L. LU;S. ISHIHARA .S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J].Fatigue & Fracture of Engineering Materials and Structures,2001(12):781-790.
[18] OCHI Y;MATSUMURA T;MASAKI K et al.High-cycle rotating bending fatigue property in very long-life ragime of highstrength steels[J].Fatigue Fracture Engineering Materials Structure,2002,25(8-9):823-830.
[19] Q.Y. Wang;C. Bathias;N. Kawagoishi .Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J].International Journal of Fatigue,2002(12):1269-1274.
[20] 李永德,李守新,杨振国,柳洋波,戎利建,惠卫军,翁宇庆.氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J].金属学报,2008(01):64-68.
[21] Yongde Li;Zhenguo Yang;Shouxin Li;Yangbo Liu;Shuming Chen;Weijun Hui;Yuqing Weng .Effect of Hydrogen on Fatigue Strength of High-Strength Steels in the VHCF Regime[J].Advanced Engineering Materials,2009(7):561-567.
[22] 褚武扬;乔立杰;陈奇志.断裂与环境断裂[M].北京:科学出版社,2000:95-109.
[23] Nakatani, M.;Fujihara, H.;Sakihara, M.;Minoshima, K. .Fatigue crack growth acceleration caused by irreversible hydrogen desorption in high-strength steel and its mechanical condition[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(25/26):7729-7738.
[24] Maoqiu Wang;Eiji Akiyama;Kaneaki Tsuzaki .Hydrogen Degradation of a Boron-Bearing Steel with 1050 and 1300 Mpa Strength Levels[J].Scripta materialia,2005(5):403-408.
[25] MURAKAMI Y;MATSUNAGA H .The effect of hydrogen on fatigue properties of steels used for fuel cell system[J].International Journal of Fatigue,2006,28(11):1509-1021.
[26] 郭昀静,王春芳,李建锡,王毛球.利用TDS研究二次硬化钢中氢的扩散行为[J].航空材料学报,2012(03):5-9.
[27] CHAPETTI M D;TAGAWA T;MIYATA T .Ultra-long cycle fatigue of high-strength carbon steels part Ⅱ:estimations of fatigue limit for failure from internal inclusions[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2003,356(1-2):236-244.
[28] MURAKAMI Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M].Amsterdam & Boston:Elsevier,2002:11-24.
[29] Y.B. Liu;Z.G. Yang;Y.D. Li;S.M. Chen;S.X. Li;W.J. Hui;Y.Q. Weng .On the formation of GBF of high-strength steels in the very high cycle fatigue regime[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):408-415.
[30] Li, YD;Chen, SM;Liu, YB;Yang, ZG;Li, SX;Hui, WJ;Weng, YQ .The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime[J].Journal of Materials Science,2010(3):831-841.
[31] NARITA N;SHIGA T;HIGASHIDA K .Crack impurity interactions and their role in the embrittlement of Fe alloy crystals charged with light elements[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1994,176(1-2):203-209.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%