欢迎登录材料期刊网

材料期刊网

高级检索

在Gleeble1500试验机上,对温度范围为380~470℃和应变速率范围为0.001~10s~(-1)的一种新型含Sc的超高强铝合金的流变行为进行研究,并用金相观察和透射电镜分析考察压缩变形时的组织演变.结果显示,真应力-真应变曲线在小应变条件下(ε<0.15)表现出峰值应力及随后的动态流变特征,这种关系可以用Zener-Hollomon指数方程来描述.指数方程中的平均热变形激活能Q为157.9kJ/mol .变形试样中的亚结构由拉长后晶粒中的少量细小的等轴多边形亚晶粒和晶界上的锯齿状组织构成.动态流变主要是由动态回复(DRV)和动态再结晶(DRX)引起.

参考文献

[1] Deschamps A.;Brechet Y. .Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):200-207.
[2] STILLER K;WARREN P J;HANSEN V et al.Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100℃ and 150℃[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1999,270:55-63.
[3] James C. Williams;Edgar A. Starke Jr. .Progress in structural materials for aerospace systems[J].Acta materialia,2003(19):5775-5799.
[4] Sha G;Cerezo A .Characterization of precipitates in an aged 7xxx series Al alloy[J].Surface and Interface Analysis: SIA: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films,2004(5/6):564-568.
[5] 黄兰萍,陈康华,郑子樵,黄永平.微量Ag,Mg对Al-Cu-Li合金时效特性和显微组织的影响[J].稀有金属材料与工程,2005(08):1322-1325.
[6] 尹登峰,郑子樵,余志明.Sc对Al-Li-Cu-Mg-Ag-Zr合金组织和性能的影响[J].稀有金属材料与工程,2003(09):736-739.
[7] HE Yong-dong,ZHANG Xin-ming,YOU Jiang-hai.Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J].中国有色金属学会会刊(英文版),2006(05):1228-1235.
[8] MCQUEEN H J;CELLIERS O C .Substructural influence in the hot rolling of Al alloys[J].Canadian Metallurgical Quarterly,1997,36:73-86.
[9] S. Spigarelli;E. Evangelista;H.J. McQueen .Study of hot workability of a heat treated AA6082 aluminum alloy[J].Scripta materialia,2003(2):179-183.
[10] MCQUEEN H J;XIA X;CUI Y et al.Solution and precipitation effects on hot workability of 6201 alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,319-321:420-424.
[11] Hui Zhang;Luoxing Li;Deng Yuan .Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures[J].Materials Characterization,2007(2):168-173.
[12] 吴文祥,孙德勤,曹春艳,王战锋,张辉.5083铝合金热压缩变流变应力行为[J].中国有色金属学报,2007(10):1667-1671.
[13] 林高用,张辉,郭武超,彭大暑.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001(03):412-415.
[14] William H. Van Geertruyden;Wojciech Z. Misioiek;Paul T. Wang .Grain structure evolution in a 6061 aluminum alloy during hot torsion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):105-114.
[15] Su JQ;Nelson TW;Sterling CJ .Microstructure evolution during FSW/FSP of high strength aluminum alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):277-286.
[16] GOURDET S;MONTHEILLET F .An experimental study of the recrystallization mechanism during hot deformation of aluminum[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,283:274-288.
[17] BAOLUTE REN;JAMES G. MORRIS .Microstructure and Texture Evolution of Al during Hot and Cold Rolling[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1995(1):31-40.
[18] H.E. Hu;L. Zhen;L. Yang;W.Z. Shao;B.Y. Zhang .Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):64-71.
[19] Kentaro Ihara;Yasuhiro Miura .Dynamic recrystallization in Al-Mg-Sc alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):647-650.
[20] CHA J R;BAE W B;HWANG W J et al.A study on the hot-deformation behavior and dynamic recrystallization of Al-5% Mg alloy[J].Mater Process,2001,118(1-3):356-361.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%