欢迎登录材料期刊网

材料期刊网

高级检索

以凹凸棒黏土(Att)为基体,通过原位溶胶-凝胶工艺,将SnO_2-TiO_2复合氧化物负载于凹凸棒黏土表面制备凹凸棒黏土复合型光催化剂(Att-SnO_2-TiO_2). 采用XRD、BET、TEM等分析测试技术对产物进行了表征. 结果表明,SnO_2-TiO_2复合氧化物均匀地负载于凹凸棒黏土表面,其平均粒径约10 nm;经过复合氧化物负载改性后,凹凸棒黏土的表面形貌得到明显改善,产物的负载效果好、比表面积大. 以光催化降解甲基橙为探针,研究了凹凸棒黏土复合光催化剂的光催化性能. 结果表明,凹凸棒黏土复合光催化剂显示出优异的光催化性能,其光催化活性顺序为Att-SnO_2-TiO_2>Att-SnO_2>Att-TiO_2. 以性能较佳的Att-SnO_2-TiO_2为催化剂光降解甲基橙30 min,结果表明,甲基橙的降解率达99%. 实验表明,Att-SnO_2-TiO_2复合光催化剂可重复利用.

Attapulgite(Att) was used as the matrix of SnO_2-TiO_2 hybrid oxide to synthesize a novel kind of composite photocatalyst(Att-SnO_2-TiO_2) by depositing SnO_2-TiO_2 hybrid oxides on the surface of Att via an in stiu sol-gel technique. The obtained products were characterized by means of X-ray diffraction(XRD), BET surface area and transmission electron microscope(TEM). Experimental results show that the surface of attapulgite was evenly covered by SnO_2-TiO_2 nanocomposites with particle size around 10 nm. The modification of attapulgite by loading these composites resulted an improvement of its surface morphology while retaining its high surface area. Photocatalytic removal of methyl orange under ultraviolet radiation was studied in the presence of Att composites. Results show that the Att composite photocatalysts presented preferable photocatalytic property, and the photoactivity of the composite photocatalyst decreased in a sequence of Att-SnO_2-TiO_2>Att-SnO_2>Att-TiO_2. The Att-SnO_2-TiO_2 exhibited excellent activity and the decomposition rate of methyl orange was up to 99% within 30 min when the Att-SnO_2-TiO_2 powder was used as the photocatalyst. The repeated use of the composite photocatalyst was also confirmed.

参考文献

[1] ZHU Hai-Qing(朱海青),ZHOU Jie(周杰).Conser Utili Mineral Res(矿产保护与利用)[J],2004,8(4):1
[2] YANG Jie(杨婕),CHEN Jing-Zhong(陈敬中).Res Survey Environ(资源调查与环境)[J],2004,3(24):1 671
[3] CHEN Tian-Hu(陈天虎),ZHU Guang(朱光),XU Hui-Fang(徐惠芳).Acta Petro Sinica(岩石学报)[J],2003,19(4):767
[4] MA Yu-Heng(马玉恒),FANG Wei-Min(方卫民),MA Xiao-Jie(马小杰).Mater Rev(材料导报)[J],2006,20(9):45
[5] Liu P,Wang T M.J Hazard Mater[J],2007,149:75
[6] Guo X L,Yao Y D,Yin G F,Kang Y Q,Luo Y,Zhuo L.Appl Clay Sci[J],2008,40:20
[7] ZHAO Di-Fang(赵娣芳),ZHOU Jie(周杰),LIU Ning(刘宁).Bull Chinese Ceramic Soc(硅酸盐通报)[J],2005,(3):67
[8] Fujishima A,Honda K.Nature[J],1972,37:238
[9] Kozlov DV,Vorontsov A V.J Catal[J],2008,258:87
[10] Takata T,Shinohara K,Tanaka A,Hara M,Kondo J N,Domen K.J Photochem Photobio A:Chem[J],1997,106:45
[11] Tetsuy K,Gu G Q,Yuuki M.J Mater Chem[J],2003,13:1 186
[12] Zhang L H,Li P J,Gong Z Q,Li X M.J Hazard Mater[J],2008,158:478
[13] FAN Chong-Zheng(范崇政),XIAO Jian-Ping(肖建平),SI Ding-Yan-Wei(四丁延伟).Chinese Sci Bull(科学通报)[J],2001,46(4):265
[14] Yang J,Li D,Wang X,Lu L D,Yang X J.J Solid State Chem[J],2002,165:193
[15] HU Liu-Jiang(胡六江),LI Yi-Min(李益民),CAI Guo-Ying (柴国英).Chinese J Appl Chem(应用化学)[J],2008,25:569
[16] Matos J,Laine J,Herrmann J M.J Catal[J],2001,200:10
[17] Shimizu K,Kaneko T,Fujishima T,Kodama T,Yoshida H,Kitayama Y.Appl Catal A[J],2002,22:185
[18] WANG Jiu-Si(王九思),LAI Feng-Xi(来风习),WANG Ming-Quan(王明权),LV Jiang-Ping(吕江平).Environ Eng(环境工程)[J],2007,25:91
[19] PENG Shu-Chuan(彭书传),XIE Jing-Jing(谢晶晶),QING Cheng-Song(庆承松),CHEN Tian-Hu(陈天虎),XU Hui-Fang(徐惠芳),CHEN Ju-Xia(陈菊霞),YUAN Jun(袁君).Bull Chinese Ceramic Soc(硅酸盐学报),2006,134(10):1 208
[20] CHEN Tian-Hu(陈天虎),SHI Xiao-Li(史晓莉),PENG Shu-Chuan(彭书传).J Inorg Mater(无机材料学报)[J],2004,23(1):59
[21] Wu W S,Fan Q H,Xu J Z.Appl Radi Isotopes[J],2007,65:1 108
[22] Neren(o)kte A,(O)zge Y_1lmaz.Appl Catal B:Environ[J],2008,85:92
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%