欢迎登录材料期刊网

材料期刊网

高级检索

Nabarro-Herring蠕变模型一直被认为是解释合金高温扩散蠕变的经典理论模型.然而,在20世纪末,Ruano等在分析当时几乎所有已知合金高温低应力条件下的蠕变试验数据后发现,按Nabarro-Herring扩散蠕变模型计算的蠕变速率数据与实验结果吻合度都很不理想,有的甚至相差1×103倍.研究认为,由于Nabarro-Herring扩散蠕变模型仅仅考虑了几乎不可能存在的空位扩散流,忽略了不均匀力化学势场导致的原子扩散流,因此在定量处理多晶材料的高温低应力蠕变数据时有很大偏差.在高温低应力条件下,由于位错、晶界等非平衡缺陷的存在,实际晶体材料中原子的力化学势并非处处相等,因此导致原子扩散流的产生,材料发生扩散蠕变.多晶材料高温低应力条件下的扩散蠕变可以认为是静水应力作用下的体积蠕变和非静水应力作用下的形状蠕变的叠加.本研究将重新审视Nabarro-Herring扩散蠕变模型的理论基础,初步建立能够合理解释多晶材料高温蠕变时晶界形成无沉淀区的定性模型,为有关问题的解决提供新的思路.

参考文献

[1] Greenwood G W;Mishra R S.Creep Behavior of Advanced Materials for the 21st Century[M].TMS:Warrendale:PA,1999:413.
[2] Ruano O A;Wadsworth J;Wolfenstine J;Sherby O D .Evidence for Nabarro-Herring creep in metals:fiction or reality[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1993,165(02):133.
[3] Ruano O A;Sherby O D;Wadsworth J;Wolfenstine J .Rebuttal to "in defense of diffusional creep”[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,211(1-2):66.
[4] JEFFREY WADSWORTH;OSCAR A. RUANO;OLEG D. SHERBY .Denuded Zones, Diffusional Creep, and Grain Boundary Sliding[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2002(2):219-229.
[5] Burton B;Reynolds G L .In defense of diffusional creep[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1995,191(1-2):135.
[6] Murty K L;Gollapudi S;Charit I .Newtonian viscous creep in metals[J].Trans Indian Institute Metals,2010,63(2-3):85.
[7] Kumar P;Kassner ME;Langdon TG .Fifty years of Harper-Dorn creep: a viable creep mechanism or a Californian artifact?[J].Journal of Materials Science,2007(2):409-420.
[8] Mohamed F A .Harper-Dorn creep:controversy,requirements,and origin[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,463(1-2):177.
[9] Kraftmakher Y. .Equilibrium vacancies and thermophysical properties of metals [Review][J].Physics Reports: A Review Section of Physics Letters (Section C),1998(2/3):80-188.
[10] 潘金生;仝建民;田民波.材料科学基础[M].北京:清华大学出版社,1998:345.
[11] 古特曼;金石.金属力学化学与腐蚀防护[M].北京:科学出版社,1989:15.
[12] Nabarro F R N.In:Report of a Conference on the Strength of Solids (Bristol)[M].London:The Physical Society,1948:75.
[13] Herring C .Diffusional viscosity of a polycrystalline solid[J].Journal of Applied Physics,1950,21(03):437.
[14] 郑磊,徐庭栋.一种实验确定多晶材料晶界区弹性模量的方法[J].自然科学进展,2004(05):573-577.
[15] M. Upmanyu .Grain boundary stiffness based on a dislocation model[J].Scripta materialia,2007(6):553-556.
[16] Peralta P;Schober A;Laird C .Elastic stresses in anisotropic bicrystals[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1993,169(1-2):43.
[17] Kamaya M;Kawamura Y;Kitamura T .Three-dimensional local stress analysis on grain boundaries in polycrystalline material[J].International Journal of Solids and Structures,2007(10):3267-3277.
[18] 邸玉贤,计欣华,李林安,秦玉文,陈金龙.纳米金属材料宏观弹性模量的数值模拟研究[J].机械强度,2007(01):16-19.
[19] Squires R L;Weiner R T .Grain-bonndary denuded zones in a magnesium-1/2wt% zirconium alloy[J].Journal of Nuclear Materials,1963,8(01):77.
[20] McNee K R;Greenwood G W;Jones H .Observation and interpretation of some microstructural features of low stress creep[J].Scripta Materialia,2002,47(09):619.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%