欢迎登录材料期刊网

材料期刊网

高级检索

采用无压浸渗法制备了B_4C-CeB_6/Al复合材料, 并对其进行了力学性能测试. B_4C-CeB_6/Al复合材料的密度、抗弯强度、断裂韧性相比单一B4C材料都有很大的提高, 而硬度有所降低. 其抗弯强度值为409.47 Mpa, 比单一碳化硼提高了39.32%; 断裂韧性值6.58 Mpa·m~(1/2), 比单一碳化硼提高了78.80%. B_4C-CeB_6/Al复合材料的抗弯强度和断裂韧性的提高主要有两方面的作用: 一是由于原位生成的CeB_6和B_4C颗粒之间热膨胀系数的不匹配产生残余应力, 从而引起裂纹偏转起到增韧的效果; 二是渗入金属铝的延展性在复合材料中得以体现, 使复合材料韧性增加.

B_4C-CeB_6/Al composites were fabricated by pressureless infiltration technology. The mechanical properties of B_4C-CeB_6/Al composites were tested. The density, the flexibility strength and the fracture toughness of B_4C-CeB_6/Al composites were greatly improved compared with those of monolithic boron carbide, but the hardness decreased. The value of flexibility strength of B_4C-CeB_6/Al composites was 409.47 MPa, which was improved nearly 39.32% compared with that of monolithic boron carbide; the value of fracture toughness was 6.58 MPa·m~(1/2), which was improved nearly 78.80% compared with that of monolithic boron carbide. The flexibility strength and the fracture toughness of B_4C-CeB_6/Al composites were greatly improved for two major reasons. Firstly the crack deflection caused by the residual stress resulted from the difference in thermal expansion coefficient between B_4C and CeB_6 was the main toughening mechanisms. Secondly the ductility of aluminum was manifested in B_4C-CeB_6/Al composites.

参考文献

[1] 唐国宏;张兴华;陈昌麟.碳化硼超硬材料综述[J].材料导报,1994(04):69.
[2] 熊昆,徐光亮,李冬梅.SiC复相陶瓷的强化增韧趋势[J].稀有金属,2008(01):101-106.
[3] Vastn Bessonjm .Atomic structure and vibrational properties of icosahedral aboron and B_4C boron carbide[J].Computational Materials Science,2000,17:127.
[4] Lee BS.;Kang S. .Low-temperature processing of B4C-Al composites via infiltration technique[J].Materials Chemistry and Physics,2001(1/3):249-255.
[5] 唐志阳.稀土氧化物在陶瓷中的应用[J].山东陶瓷,2005(02):16-19.
[6] 张玉珍,诸爱珍.稀土在陶瓷材料中的应用[J].江苏陶瓷,2005(02):27-29.
[7] Frage N;Levin L;Frumin N;Gelbstein M Dariel M P .Manufacturing B_4C-(Al,Si) composite materials by metal alloy infiltration[J].Journal of Materials Processing Technology,2003,143-144:486.
[8] Gursoy Arslan;Ferhat Kara;Servet Turan .Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminium composites[J].Journal of the European Ceramic Society,2003,23:1243.
[9] Pyzik A J;Aksay I A .Multipurpose boron carbide-aluminium composite and its manufacture via the control of the micro-structure[P].US Patent No:4702770,1987.
[10] 李青,华文君,崔岩,张少卿.无压浸渗法制备B4C/Al复合材料研究[J].材料工程,2003(04):17-20.
[11] 卢平,沈春英,丘泰.掺杂氧化铈钡钨阴极的结构和发射性能的研究[J].稀有金属,2008(01):50-53.
[12] 傅苏黎,丁华东,雷秉强,韩文政,庞茂清.碳化硼基3DMC材料抗弹性能的初步探讨[J].装甲兵工程学院学报,2003(03):17-20.
[13] Lee K B;Sim H S;CHo S Y;Kwon H.Reaction products of Al-Mg/B_4C composite fabricated by pressureless infiltrations technique[J].Materials Science and Engineering,2001:227.
[14] 志浩;高积强;乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2001:162.
[15] Peng Kewu;Wu Wenyuan;Xu Jingyu;Tu Ganfeng and Ning Fuhu .Study on mechanical properties and fracture mechanisms of B_4C-CeB_6/Al composites[J].Journal of Rare Earths,2007,25:77.
[16] Danny C;Halverson;Manteca;Calif J .Aleksander.Boron-carbide-aluminum and boron-carbide-reactive metal cermets[P].US Patent No:4605440,1986.
[17] 唐军;谭寿洪;陈忠明.原位合成TiB2颗粒增韧B_4C陶瓷的研究[J].粉末冶金技术,1996(08):168.
[18] Itch H;Tsunekawa Y;Tago S;Lwahara H .Synthesis and sinterablity of composite powder of the TiB_2-B_4C system[J].Journal of Alloys and Compounds,1993,191:191.
[19] 李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995
[20] Davidge R W.Mechanical Behavior of Ceramics[M].Cambridge:Cambridge University Press,1979:{?}96:89.
[21] Rice R W;Freiman S W;Becher P F .Grain-size dependence of fracture energy in ceramics I[J].Journal of the American Ceramic Society,1981,64(06):345.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%