{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用聚丙烯纤维来防止混凝土的早期塑性收缩裂缝是近年来为解决混凝土裂缝难题而采取的新措施.研究了两种聚丙烯纤维(Cemfiber和DF)的掺量、纤维种类等参数对塑性收缩裂缝的影响规律;分别采用圆形、平板状试件来研究砂浆、普通混凝土和高性能混凝土的抗裂性能.研究结果表明:(1)聚丙烯纤维可以显著提高混凝土抗裂能力,纤维掺量越高,抗裂能力越强;(2)为防止裂缝,应该尽可能降低水泥用量和提高骨料用量;(3)聚丙烯纤维提高混凝土抗裂能力的主要原因是纤维提高混凝土的早期应变能力、减小收缩应变、提高塑性抗拉强度和减小毛细管的表面张力.","authors":[{"authorName":"邢锋","id":"f20d8d1d-365c-4196-9ad9-2267d8a4f8d3","originalAuthorName":"邢锋"},{"authorName":"冷发光","id":"18892451-5e9b-4f66-a51f-c8ccfe6056ca","originalAuthorName":"冷发光"},{"authorName":"冯乃谦","id":"af1ffaf5-a006-44af-aeff-674538de6e3e","originalAuthorName":"冯乃谦"},{"authorName":"李伟文","id":"c03fa87a-c1ba-495d-95f7-347b9ea332ec","originalAuthorName":"李伟文"}],"doi":"10.3321/j.issn:1000-3851.2002.06.023","fpage":"120","id":"aaf2c8bc-869a-4e8c-a875-38e35667f8a1","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7d20fed0-1423-4d3f-a72a-e4b016d8ce51","keyword":"聚丙烯纤维","originalKeyword":"聚丙烯纤维"},{"id":"8af25aac-d1a4-4968-b637-df041492791f","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"72885309-ca80-49ef-9404-abf4d1d02245","keyword":"塑性裂缝","originalKeyword":"塑性裂缝"},{"id":"b48c32a0-b10b-4501-a64a-9f0e81b2dff3","keyword":"配合比参数","originalKeyword":"配合比参数"},{"id":"454cfe63-68e7-4da2-86ad-22808a630eca","keyword":"混凝土应变","originalKeyword":"混凝土应变"}],"language":"zh","publisherId":"fhclxb200206023","title":"克裂速纤维增强混凝土抗裂性能","volume":"19","year":"2002"},{"abstractinfo":"目前混凝土裂缝问题倍受关注,本文在对混凝土裂缝进行分类的基础上,分析了不同裂缝的形成原因,并提出了裂缝防治的措施及处理方法.","authors":[{"authorName":"朱耀台","id":"f6c36c22-be7d-450c-bde1-8dbef7451c5f","originalAuthorName":"朱耀台"},{"authorName":"詹树林","id":"74615612-9238-4826-a39a-77e7399215ad","originalAuthorName":"詹树林"}],"doi":"10.3969/j.issn.1673-2812.2003.05.027","fpage":"727","id":"1485af99-dedd-4e37-906b-909aa4c11370","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e7b0e43f-9455-4b2f-a522-48ae0d1ee6d2","keyword":"混凝土裂缝","originalKeyword":"混凝土裂缝"},{"id":"bb935ed1-f243-426b-80a6-507b3fc71fa5","keyword":"形成原因","originalKeyword":"形成原因"},{"id":"7ddb793b-fe0a-4181-80c3-094412d2e7b8","keyword":"防治措施","originalKeyword":"防治措施"}],"language":"zh","publisherId":"clkxygc200305027","title":"混凝土裂缝成因与防治措施研究","volume":"21","year":"2003"},{"abstractinfo":"为了从复杂的路面环境中快速检测出路面裂缝并进行分类,提出一种多尺度矩阵滤波的路面裂缝检测方法。该方法基于 TI 公司 TMS642 DSP 平台,可以实现大量复杂数据的快速实时处理,通过多尺度滤波处理路面图像,有效进行图像预处理,消除噪声影响,突出路面裂缝特征。通过 Hessian 矩阵的特征值和特征方向提取裂缝特征,实现裂缝生长方向的跟踪,确定裂缝像素始末位置,从而确定裂缝大小,同时提出裂缝合并算法对小的不连续裂缝进行合并,最后根据裂缝曲率对裂缝进行快速分类。实验结果表明,该方法可以实现路面裂缝准确、快速的检测及分类,抗噪声能力强,图像分割精度高,漏检率和错检率很低,可以满足工程应用要求。","authors":[{"authorName":"杨会玲","id":"b8eed146-f916-4bcd-92aa-05165ceef234","originalAuthorName":"杨会玲"},{"authorName":"崔洪恩","id":"8cf3716f-dbb1-49a2-b348-57ed63606223","originalAuthorName":"崔洪恩"},{"authorName":"孙慧婷","id":"cbe21b83-1c03-45fc-b001-e8f4a286c8b1","originalAuthorName":"孙慧婷"},{"authorName":"何昕","id":"fa4bf5a0-f8aa-4790-9af4-4b8a5084e1bd","originalAuthorName":"何昕"}],"doi":"10.3788/YJYXS20163108.0778","fpage":"778","id":"757998ef-69d8-41e9-a181-cbd9175ea81f","issue":"8","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"ba2a7805-689f-40af-bd61-b227b17ece22","keyword":"裂缝检测","originalKeyword":"裂缝检测"},{"id":"8a368de2-4e0a-45dd-a8ee-fdfafa2a29bb","keyword":"滤波","originalKeyword":"滤波"},{"id":"ae9f39e7-4433-4113-8f04-df75aa431177","keyword":"曲率","originalKeyword":"曲率"},{"id":"c77c02e7-2e7e-4ec5-92ad-b84d27811fd4","keyword":"图像分割","originalKeyword":"图像分割"}],"language":"zh","publisherId":"yjyxs201608008","title":"多尺度矩阵滤波的路面裂缝检测方法研究","volume":"31","year":"2016"},{"abstractinfo":"采用4340、15和A508三种结构钢,八种热处理状态;测定了它们在空气、海水和蒸馏水中的疲劳、应力腐蚀和腐蚀疲劳裂缝扩展速率,并进行了定量断口分析。在比较了叠加模型、竞争模型与实验结果的差异之后,提出了腐蚀疲劳裂缝扩展的韧带模型,拟出了该模型的计算程序。结果表明,尽管这个模型还比较粗糙,某些常数的决定还有点勉强,但由此估算的腐蚀疲劳扩展曲线,无论在形状和数值上,都与实验吻合;而它的简单方便,为工程应用提供了有利条件。","authors":[{"authorName":"王正","id":"cf4f7ce6-3a0c-48cc-897a-ce5075e53d8a","originalAuthorName":"王正"},{"authorName":"王志奇","id":"c274edca-a04a-4c79-af8f-1b3db596ba15","originalAuthorName":"王志奇"}],"categoryName":"|","doi":"","fpage":"161","id":"cea9159c-3ea5-46a6-94c0-f68529375766","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"70b4ce7d-47e4-4a29-a283-bd801f06cfa3","keyword":"腐蚀疲劳","originalKeyword":"腐蚀疲劳"},{"id":"336ebc25-46c2-4ad1-9eef-fdcc37f9f18e","keyword":" Crack growth rate","originalKeyword":" Crack growth rate"},{"id":"858cebde-3bea-4390-8329-421db3898400","keyword":" Ligament model","originalKeyword":" Ligament model"}],"language":"zh","publisherId":"1005-4537_1996_3_6","title":"腐蚀疲劳裂缝扩展的韧带模型","volume":"16","year":"1996"},{"abstractinfo":"根据对低碳钢解理断裂显微特征分析的结果,以相邻解理系统失配作为裂纹过界扩展的阻力源,建立了解理裂纹过界扩展的临界条件,并根据解理系统的空间分布的统计特性,对裂缝试样的解理断裂行为进行了计算模拟。计算结果与实验结果一致。","authors":[{"authorName":"黄正","id":"ec25826c-b64f-4875-bf74-1c53ab7e04d7","originalAuthorName":"黄正"},{"authorName":"姚枚","id":"cb80c58e-ee75-4332-988c-29ab594c54d6","originalAuthorName":"姚枚"}],"categoryName":"|","doi":"","fpage":"53","id":"348e4cf7-f298-48d9-b78d-a5e9be0d2f45","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"e3a75e36-7e89-4b42-ac1c-1c5aabb26491","keyword":"解理断裂","originalKeyword":"解理断裂"},{"id":"570aa451-8497-47cb-9465-7e31dd922392","keyword":"fracture mechanism","originalKeyword":"fracture mechanism"},{"id":"d1896d83-ac04-4c8e-afad-6cf171e3b13b","keyword":"finite element analysis","originalKeyword":"finite element analysis"},{"id":"58d0da26-f53c-47bb-82a6-a8dc6dccbbd7","keyword":"criterion","originalKeyword":"criterion"}],"language":"zh","publisherId":"0412-1961_1990_1_16","title":"解理裂缝过界扩展模型","volume":"26","year":"1990"},{"abstractinfo":"针对渗透结晶型混凝土裂缝自愈合评价需求,制备了空白混凝土和自愈合混凝土,分别采用裂缝宽度观测法、相对强度恢复法和抗渗恢复法对两种混凝土自愈合效果进行了评价研究.结果表明,采用裂缝宽度观测法评价渗透结晶型裂缝自愈合的适用性较差;相对强度恢复法和抗渗恢复法评价混凝土裂缝自愈合的效果良好;可联合运用相对强度恢复法和抗渗恢复法对混凝土宏观裂缝和微裂缝的自愈合效果进行综合评价.","authors":[{"authorName":"曾俊杰","id":"deabfaff-0d5e-4aef-8530-5c1c00dcb6f6","originalAuthorName":"曾俊杰"},{"authorName":"范志宏","id":"7cb954bb-9a8b-45e3-98f7-ba774be34a41","originalAuthorName":"范志宏"},{"authorName":"熊建波","id":"e28c5d38-f9d5-417d-86e4-e7b8a9892604","originalAuthorName":"熊建波"},{"authorName":"王胜年","id":"cbdb7b9c-3a52-4f8a-becd-3baccd2e1755","originalAuthorName":"王胜年"}],"doi":"","fpage":"3051","id":"ece63712-abb8-425c-9590-9f90d34d68da","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"8d348513-9732-4b9c-989a-147651b877a7","keyword":"渗透结晶","originalKeyword":"渗透结晶"},{"id":"b3990ce0-d488-4f33-aa7e-8c212846f91f","keyword":"裂缝","originalKeyword":"裂缝"},{"id":"52a53c5a-007e-47ed-845f-474315a830fa","keyword":"自愈合","originalKeyword":"自愈合"},{"id":"0d7101ed-a5c0-47a0-9cec-1eb4a1115d2b","keyword":"评价方法","originalKeyword":"评价方法"}],"language":"zh","publisherId":"gsytb201510057","title":"混凝土裂缝渗透结晶自愈合评价方法研究","volume":"34","year":"2015"},{"abstractinfo":"选用3种混凝土涂层配套方案,研究了涂料涂层对混凝土表面裂缝的追随性能.","authors":[{"authorName":"李伟华","id":"557012d5-7198-4688-9a1c-2e6fa7ba308e","originalAuthorName":"李伟华"},{"authorName":"王爱华","id":"827b8b7f-c48a-4bdb-965f-4fcf55fbb30f","originalAuthorName":"王爱华"},{"authorName":"得能敏已","id":"8533f1e2-ed64-46ef-9aa4-95578af81422","originalAuthorName":"得能敏已"},{"authorName":"田边弘往","id":"ebc66794-12e5-4119-ad3a-db6f50a5fa82","originalAuthorName":"田边弘往"},{"authorName":"侯保荣","id":"c12cdd8e-757f-4e84-aab1-aad697dbc1c4","originalAuthorName":"侯保荣"}],"doi":"10.3969/j.issn.0253-4312.2008.03.001","fpage":"1","id":"d54f3374-4c2c-4084-aa0a-4b35b2031479","issue":"3","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"ae432a0c-40b5-4e28-9ae8-519a4f5ba239","keyword":"涂层","originalKeyword":"涂层"},{"id":"4ee7d576-0149-4b44-8acc-4892a7b68191","keyword":"混凝士裂缝","originalKeyword":"混凝士裂缝"},{"id":"6297bc5c-35d9-4c74-8c06-ffccc89893e3","keyword":"追随性","originalKeyword":"追随性"}],"language":"zh","publisherId":"tlgy200803001","title":"涂料涂层对混凝土表面裂缝追随性的研究","volume":"38","year":"2008"},{"abstractinfo":"与普通混凝土相比,再生骨料混凝土因干燥收缩率较大,特别是在有约束的情况下,产生干燥收缩裂缝的可能性较大.试验着眼于再生骨料混凝土耐久性中的干燥收缩性能,以不同强度等级、不同环境因素为变量,对不同组配再生骨料混凝土在抵抗干燥收缩裂缝方面与普通混凝土进行对比性试验研究.试验结果表明,随着龄期的增长,各系列混凝土的干燥收缩裂缝总面积有所加大,在相对湿度较接近时,随着环境温度的提高,各系列混凝土的干燥收缩裂缝总面积在增加;再生骨料混凝土的干燥收缩裂缝总面积比对比用普通混凝土大,裂缝数量,裂缝宽度都明显增加,特别是细骨料100%使用再生骨料的C50再生骨料混凝土的干燥收缩裂缝总面积比粗骨料100%使用再生骨料系列混凝土大.","authors":[{"authorName":"崔正龙","id":"526d5736-f2c7-4ff3-ab56-6f97ef88e68b","originalAuthorName":"崔正龙"},{"authorName":"童华彬","id":"4cd554ae-5e78-4a62-bad0-a01c96f79f49","originalAuthorName":"童华彬"},{"authorName":"路沙沙","id":"0ae93bd6-e9fa-4943-90ba-5d8a48dcc477","originalAuthorName":"路沙沙"},{"authorName":"汪振双","id":"962c92ad-5730-45c5-a1d1-d2a640205b3f","originalAuthorName":"汪振双"}],"doi":"","fpage":"957","id":"2c1fed11-52b6-4470-9750-b04e99838813","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"2bc6c619-302b-456f-85df-c13655fb8ac6","keyword":"再生骨料","originalKeyword":"再生骨料"},{"id":"2244e699-1f1e-4850-ba69-0b91d3077159","keyword":"干燥收缩裂缝","originalKeyword":"干燥收缩裂缝"},{"id":"2c4d020d-9c15-49eb-804c-bc1e89bcb8a7","keyword":"耐久性","originalKeyword":"耐久性"}],"language":"zh","publisherId":"gsytb201305037","title":"再生骨料混凝土干燥收缩裂缝试验研究","volume":"32","year":"2013"},{"abstractinfo":"介绍了混凝土早期塑性收缩裂缝形成的毛细管应力机理和塑性沉降机理,综述了国内外关于塑性收缩开裂影响因素的最新研究进展,并从混凝土配合比、成型、养护等角度出发,提出了防止塑性收缩裂缝的有效措施.","authors":[{"authorName":"桂苗苗","id":"5d71b2cf-b2f1-496b-8e77-a4cc0f5ad38f","originalAuthorName":"桂苗苗"}],"doi":"","fpage":"76","id":"8fe02b27-ff11-45d4-a4cc-d6d7c21224f6","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"56665e07-3d7a-432b-a771-9d15abfca00e","keyword":"塑性收缩","originalKeyword":"塑性收缩"},{"id":"488cf950-84b1-453e-ba0f-810ff217ee1f","keyword":"塑性沉降","originalKeyword":"塑性沉降"},{"id":"b54742d5-5e8e-42c4-95d1-8e71dae92441","keyword":"影响因素","originalKeyword":"影响因素"},{"id":"f849844d-56dc-40b9-80a5-b62475ba5cc3","keyword":"控制措施","originalKeyword":"控制措施"}],"language":"zh","publisherId":"cldb201121016","title":"混凝土早期塑性收缩开裂的研究进展","volume":"25","year":"2011"},{"abstractinfo":"总结了近些年来在水泥基材料裂缝自愈合领域的研究进展,重点论述了两种普通类型的水泥基材料裂缝自愈合的机理、愈合过程、影响因素及评价.普通水泥基材料裂缝愈合机理包括结晶沉淀、结晶渗透,对聚合物水泥基材料,主要包括空气固化愈合、热聚合愈合和温致愈合机理.并提出了进一步的研究方向. ","authors":[{"authorName":"蒋正武","id":"c6481c79-8eff-441f-8ddd-affb51aa8000","originalAuthorName":"蒋正武"}],"doi":"","fpage":"39","id":"1b33f154-2eca-4e3f-b3e5-62031991bce8","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1a4381a2-27cb-4711-8887-ddf17232dcbf","keyword":"水泥基材料","originalKeyword":"水泥基材料"},{"id":"62bd94c3-cd67-4a14-bedd-786dd81afca6","keyword":"裂缝","originalKeyword":"裂缝"},{"id":"075520e7-2ccf-4870-a016-4e7d4d932fa1","keyword":"自愈合","originalKeyword":"自愈合"},{"id":"efbb2e0d-bf91-48fb-88a9-ad506f332e53","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"cldb200304012","title":"水泥基材料裂缝自愈合的研究进展","volume":"17","year":"2003"}],"totalpage":754,"totalrecord":7538}