欢迎登录材料期刊网

材料期刊网

高级检索

将无定型MnO2在1mol/L NaOH水溶液中150℃水热处理12 h后,得到了具有线团形貌的层状二氧化锰.利用XRD、SEM和低温N2吸-脱附等手段对样品的形貌和结构进行了表征.采用循环伏安、恒流充放电以及交流阻抗技术对样品的电化学性质进行了研究.研究结果表明,在三电极体系中,线团状MnO2在0~1.0 V(vs.SCE)的电压范围内具有较好的电容性质,其质量比电容为154 F/g.利用线团状MnO2为正极,石墨烯为负极以及1 mol/L Na2SO4水溶液为电解液组装了不对称型的电化学电容器.电化学测试表明,该电容器可在0~1.8V的电压范围内可逆循环,其能量密度为21.6 W·h/kg,远远高于基于线团状MnO2(4.86W·h/kg)和石墨烯(4.3W·h/kg)的对称型电容器.

参考文献

[1] Wang G,Zhang L,Zhang J.A Review of Electrode Materials for Electrochemical Supercapacitors[J].J Chem Soc Rev,2012,41:797-828.
[2] Burke A.Ultracapacitors:Why,How,and Where is the Technology[J].J Power Sources,2000,91(1):37-50.
[3] Zhang L,Zhao X.Carbon-based Materials as Supercapacitor Electrodes[J].Chem Soc Rev,2009,38:2520-2531.
[4] Fan Z,Yan J,Wei T,et al.Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density[J].Adv Funct Mater,2011,21(12):2366-2375.
[5] Ataherian F,Wu N.1.2 Volt Manganese Oxide Symmetric Supercapacitor[J].Electrochem Comm,2011,13(11):1264-1267.
[6] Wu Z,Ren W,Wang D,et al.High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors[J].ACS Nano,2010,4(10):5835-5842.
[7] Toupin M,Brousse T,Bélanger D.Influence of Microstructure on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide[J].Chem Mater,2002,14(9):3946-3952.
[8] Toupin M,Brousse T,B langer D.Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor[J].Chem Mater,2004,16(16):3184-3190.
[9] Liu J,Essner J.Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays[J].J Chem Mater,2010,22(17):5022-5030.
[10] Ma R,Bando Y,Zhang L,et al.Layered MnO2 Nanobelts:Hydrothermal Synthesis and the Electrochemical Measurements[J].Adv Mater,2004,16(11):918-922.
[11] Zhang L,Kang L,Lv H,et al.Controllable Synthesis,Characterization and Electrochemical Properties of Manganese Oxide Nanoarchitectures[J].J Mater Res,2008,23 (3):780-789.
[12] Ge J,Zhuo L,Yang F,et al.One-Dimensional Hierarchical Layered Kx MnO2 (x < 0.3) Nanoarchitectures:Synthesis,Characterization,and Their Magnetic Properties[J].J Phys Chem B,2006,110(36):17854-17859.
[13] Subramanian V,Zhu H,Wei B.Nanostructured MnO2:Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material[J].J Power Sources,2006,159 (1):361-364.
[14] Subramanian V,Zhu H,Vajtai R,et al.Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures[J].J Phys Chem B,2005,109(43):20207-20214.
[15] Kovtyukhova N,Oilivier P,Martin B,et al.Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations[J].Chem Mater,1999,11 (3):771-778.
[16] Cao L,Lu M,Li H L.Preparation of Mesoperous Nanocrystalline Co3O4 and Its Applicability of Porosity to the Formation of Electrochemical Capacitance[J].J Electrochem Soc,2005,152 (5):A871-A875.
[17] Lei Z,Zhang J,Zhao X.Ultrathin MnO2 Nanofibers Grown on Graphitic Carbon Spheres as High-performance Asymmetric Supercapacitor Electrodes[J].J Mater Chem,2012,22:153-160.
[18] Yu C,Masarapu C,Rong J,et al.Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms[J].Adv Mater,2009,21(47):4793-4797.
[19] Khomenko V,Raymundo-Pittero E,Béguin F.A New Type of High Energy Asymmetric Capacitor with Nanoporous Carbon Electrodes in Aqueous Electrolyte[J].J Power Sources,2010,195 (1):4234-4241.
[20] Deng L,Zhu G,Wang J,et al.Graphene-MnO2 and Graphene Asymmetrical Electrochemical Capacitor with a High Energy Density in Aqueous Electrolyte[J].J Power Sources,2011,196(24):10782-10787.
[21] Khomenko E,Raymundo-Pinero F,Beguin F.Optimisation of an Asymmetric Manganese Oxide/Activated Carbon Capacitor Working at 2 V in Aqueous Medium[J].J Power Sources,2006,153 (1):183-190.
[22] Khomenko V,Raymundo-Piitero E,Fmckowiak E,et al.High-voltage Asymmetric Supercapacitors Operating in Aqueous Electrolyte[J].Appl Phys A,2006,82(4):567-573.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%