欢迎登录材料期刊网

材料期刊网

高级检索

以激光动态光散射法考察了气相SiO2在不同pH值的H2SO4和NaOH介质中的分散平均水化粒径与表面Zeta电位及二者间的关系.Zeta电位数据表明,气相SiO2在水中分散的表面硅羟基的等电点(IEP)和滴定终点(rE)的pH值分别为pH(IEP) =2.09和pH(TE) =7.47,利用滴定终点pH(TE)给出了一种简单的气相SiO2表面Si-OH浓度的测定方法.分散相粒径数据显示,在等电点和滴定终点之间,气相SiO2在水中的分散粒子的粒径能够稳定在230 nm附近;在H2SO4介质中,当pH< pH(IEP)时,随着H2SO4浓度的增大,体系中的分散粒子发生聚结而使表观粒径增大;在NaOH介质中,当pH> pH(TE)时,随着NaOH浓度的增大,分散相的表观水化粒径降低,表明NaOH的加入有利于气相SiO2的分散.

参考文献

[1] Gun'ko V M,Zarko V I,Leboda R,et al.Aqueous Suspension of Fumed Oxides:Particle Size Distribution and Zeta Potential[J].Adv Colloid Interface Sci,2001,91(1):1-112.
[2] Bode R,Ferch H,Fratzscher H.Basic Characteristics and Applications of AEROSIL(R) Fumed Silica.Technical Bulletin Fine Particles,Company Publication,Degussa AG,Frankfurt,1997:11.
[3] Herbert B,Mario H,Michael S,et al.Particle Sizes of Fumed Silica[J].Part Part Syst Charact,1999,16:169-176.
[4] Herbert B,Mario H,Michael S,et al.Particle Sizes of Fumed Silica[J].Chem Eng Technol,1998,21:745-752.
[5] Gun'ko V M,Zarko V I,Turov V V,et al.Aqueous Suspensions of Highly Disperse Silica and Germania/Silica[J].J Colloid Interface Sci,1998,205 (1):106-120.
[6] Bogillo V I,Gun'ko V M.Connection Between Chemisorption Kinetics and Adsorption Equilibria of Organic Compounds on Oxide Surfaces[J].Langmuir,1996,12(1):115-124.
[7] Gun'ko V M,Turov V V,Zarko V I,et al.Aqueous Suspensions of Fumed Silica and Adsorption of Proteins[J].J Colloid Interface Sci,1997,192(1):166-178.
[8] Liu Peng,Wang Qisui,Li Xi,et al.Investigation of the States of Water and OH Groups on the Surface of Silica[J].Colloids Surf A,2009,334 (1/3):112-115.
[9] Khlebtsov N G,Melnikov A G,Bogatyrev V A.Relaxation Optic Phenomena in Polydisperse Suspensions and Determination of Particle Sizes Using Transmitted Light Parameters[J].Colloids Surf A,1999,148(1/2):17-28.
[10] Franks G V,Lange F F.Mechanical Behavior of Saturated,Consolidated,Alumina Powder Compacts:Effect of Particle Size and Morphology on the Plastic-to-brittle Transition[J].Colloids Surf A,1999,146 (1/3):5-17.
[11] Gun'ko V M,Klyueva A V,Levchuk Y N,et al.Photon Correlation Spectroscopy Investigations of Proteins[J].Adv Colloid Interface Sci,2003,105 (1/3):201-328.
[12] Andreozzi P,Pons R,Perez L,et al.Gemini Surfactant Binding onto Hydrophobically Modified Silica Nanoparticles[J].J Phys Chem C,2008,112(32):12142-12148.
[13] Uwe K,Rainer B,Michael S,et al.Dynamic Light Scattering for the Characterization of Polydisperse Fractal Systems:Ⅰ.Simulation of the Diffusional Behavior[J].Part Part Syst Charact,2008,25:9-18.
[14] Wang W,Gu B,Liang L,et al.Adsorption and Structural Arrangement of Cetyltrimethylammonium Cations at the Silica Nanoparticle Water Interface[J].J Phys Chem B,2004,108(45):17477-17483.
[15] Adamczyk Z,Zembala M,Warszynski P,et al.Characterization of Polyelectrolyte Multilayers by the Streaming Potential Method[J].Langmuir,2004,20(24):10517-10525.
[16] Lo C,Zhang J S,Somasundaran P,et al.Adsorption of Surfactants on Two Different Hydrates[J].Langmuir,2008,24(22):12723-12726.
[17] Serizawa T,Hirai Y,Aizawa M.Novel Synthetic Route to Peptide-Capped Gold Nanoparticles[J].Langmuir,2009,25(20):12229-12234.
[18] Raghavan S R,Walls H J,Khan S A.Rheology of Silica Dispersions in Organic Liquids:New Evidence for Solvation Forces Dictated by Hydrogen Bonding[J].Langmuir,2000,16 (21):7920-7930.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%