采用温和水溶液法,以CuCl_2·2H_2O和H_2C_2O_4·2H_2O为原料合成了新颖结构的CuC_2O_4多孔球.产物结构与形貌用X射线衍射、扫描电子显微镜测试技术进行了表征.研究了反应温度、反应物浓度、不同体积阴离子等对产物形貌与尺寸的影响.结果表明,单斜结构的CuC_2O_4多孔球直径为400~540 nm,每个多孔球由50~80 nm的纳米粒子自组装而成.反应物浓度及阴离子体积能调节纳米粒子的团聚尺寸,而反应温度可有效地调节多孔球的尺寸.刻蚀过程解释了CuC_2O_4多孔球的形成机理.
Cu_C2O_4 porous spheres were prepared on a large scale by a mild aqueous solution method at 100 ℃ for 10 h with CuCl_2 and H_2C_2O_4 as raw materials. Structures and morphologies of as-products were characterized by X-ray powder diffraction(XRD) and scanning electron microscopy(SEM). The influences of experimental conditions such as the concentration of reactants,reactive temperature and the size of anions on the structures and morphologies of as-products were investigated. The results show that as-products were monoclinic structural CuC_2O_4 porous spheres with a diameter of 400~540 nm. Each porous sphere was made of many nanoparticles with a size of 50~80 nm. Reaction temperature had more effect on the size of CuC_2O_4 porous spheres. The concentrations of reactants and the volume of anions affect the size of the aggregates of particles. So through tuning the experimental conditions,CuC_2O_4 porous spheres could be controlled-synthesized. The formation mechanism of CuC_2O_4 porous spheres based on an etching effect was discussed.
参考文献
[1] | Mann S.Angew Chem Int Ed[J],2000,39:3 392 |
[2] | Feng X,Sayle D C,Wang Z,Paras M S,Santora B,Sutorik A C,Sayle T X T,Yang Y,Ding Y,Wang X,Her Y S.Science[J],2006,312:1 504 |
[3] | Xiong Y,Wiley B,Chen J,Li Y,Yin Y,Xia Y.Angew Chem Int Ed[J],2005,44:7 913 |
[4] | Li M,Colfen H,Mann S.J Mater Chem[J],2004,14:2 269 |
[5] | Yu J,Guo H,Davis S A,Mann S.Adv Funct Mater[J],2006,16:2 035 |
[6] | Dujardin E,Mann S.Adv Eng Mater[J],2002,14:460 |
[7] | Pujol O,Bowen P,Stadelmann P A,Hofmann H.J Phys Chem B[J],2004,108:13128 |
[8] | Li M,Schnablegger H,Mann S.Nature[J],1990,402:393 |
[9] | Huang M H,Mao S,Feick H,Yan H,Wu Y,Kind H,Weber E,Russo R,Yang P.Science[J],2001,292:1 897 |
[10] | Rao C N R,Cheetham A K.J Mater Chem[J],2000,10:2 887 |
[11] | Zhao X,Cheung T L Y,Zhang X,Ng D H L,Yu J.J Am Ceram Soc[J],2006,89:2 960 |
[12] | Qi L,Li J,Ma J.Adv Mater[J],2002,14:300 |
[13] | Zhao X,Li T K,Xi Y Y,Ng D H L,Yu J.Crystal Growth Des[J],2006,6:2 210 |
[14] | Archibald D D,Mann S.Nature[J],1993,364:430 |
[15] | Shi H,Qi L,Ma J,Wu N.Adv Funct Mater[J],2005,15:442 |
[16] | Walsh D,Hopwood J D,Mann S.Science[J],1994,264:1 576 |
[17] | Zoldesi C L,Imhof A.Adv Mater[J],2005,17:924 |
[18] | Zhao X F,Yu J G.J Crystal Growth[J],2007,306:366 |
[19] | Wang X,Fu H B,Peng A D,Zhai T Y,Ma Y,Yuan F L,Yao J N.Adv Mater[J],2009,21:1 |
[20] | Xu C K,Liu Y K,Xu G D.Mater Res Bull[J],2002,37:2 365 |
[21] | Jia Z G,Yue L H,Zheng Y F,Xu Z D.Mater Res Bull[J],2008,43(8-9):2 434 |
[22] | Mullin J W.Crystallization[M].Butterworth-Heinemann,Oxford,1992,257,241,103 |
[23] | Zeng H C.J Mater Chem[J],2006,16:649 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%