欢迎登录材料期刊网

材料期刊网

高级检索

以纳米TiO_2为载体,偏钨酸铵为钨源,采用机械化学法与原位还原碳化相结合的方法制备了碳化钨-TiO_2纳米复合材料,并用X射线衍射和扫描电子显微镜等手段对样品的晶相和形貌进行了表征.结果表明,样品颗粒为不规则粒状,并有不同程度的团聚,样品的晶相组成与还原碳化时间有关,主要有金红石相TiO_2,非化学计量比氧化钛(Ti_6O_(11)),W_2C,W_1C和未定名碳化钨.其中,TiO_2粒径18.8~95.6nm,W_2C粒径17.4~24.2 nm,W_1C粒径14.7~15.8 nm.在三电极体系中,采用循环伏安法测定了样品对对硝基苯酚的电催化活性.结果表明,样品的电催化活性与晶相组成有关,且W_1C与TiO_2构成复合材料后,两者之间存在明显的协同效应.这说明TiO_2是W_1C的良好载体.

A tungsten carbide-titania nanocomposite was fabricated by combining mechanochemical approach with reduction-carbonization technology using titania nanopowder as the support and using ammonium metatungstate as the tungsten precursor. The crystal phase, the diameter of crystallite, and the morphology of the sample were characterized by X-ray diffraction and scanning electron microscopy. The results showed that the morphology of the sample particles was of irregular granules with same congregations. The crystal phase of the sample was composed of rutile (TiO_2), nonstoichiometric ratio titania (Ti_6O_(11)), bitungsten carbide (W_2C), monotungsten carbide (W_1C), and unnamed tungsten carbide. The diameter of TiO_2 crystallites was 18.8-95.6 nm, that of W_2C was 17.4-24.2 nm, and that of W_1C was 14.7-15.8 nm. The electrocatalytic activity of the sample for p-nitrophenol was measured by cyclic voltammetry in acidic solution with a three-electrode system. The results indicated that the electrocatalytic activity of the sample was correlated to its crystal phases, and a syner-gistic effect existed between tungsten carbide and titania in the nanocomposite.

参考文献

[1] Levy R B;Boudart M .[J].Science,1973,181:547.
[2] B(o)hm H .[J].Nature,1970,227:483.
[3] Xiao T C;Hanif A;York A P E;Green J S .[J].Physical Chemistry,2002,4:3522.
[4] 薛华欣,宋国新,王琳,陈建民.碳化钨负载S2O2-8/ZrO2固体超强酸催化剂上的正戊烷反应研究[J].化学学报,2003(02):208-212.
[5] 章永凡,林伟,王文峰,李俊篯.3d过渡金属碳化物相稳定性和化学键的第一性原理研究[J].化学学报,2004(11):1041-1048.
[6] 王广建,柳荣展,常俊石.新型催化剂-碳化钼和碳化钨的现状和展望[J].青岛大学学报(工程技术版),2001(03):51-53.
[7] 朱龙章;陈宇飞;张庆元 .[J].应用化学,1999,16:52.
[8] 马淳安;杨祖望;周运鸿;查全性 .[J].物理化学学报,1990,6:622.
[9] Baresel D;Gellert W;Heidemeyer J;Scharner P .[J].Angewandte Chemie International Edition,1971,10:194.
[10] Palanker V S;Gajyev R A;Sokolsky D V .[J].Electrochimica Acta,1977,22:133.
[11] Tauster S J;Fung S C;Garten R L .[J].Journal of the American Chemical Society,1978,100:170.
[12] Pavlova SN.;Bulgakov NN.;Bredikhin MN.;Sadykov VA. .THE INFLUENCE OF SUPPORT ON THE LOW-TEMPERATURE ACTIVITY OF PD IN THE REACTION OF CO OXIDATION .3. KINETICS AND MECHANISM OF THE REACTION[J].Journal of Catalysis,1996(2):517-523.
[13] 刘晶华,于春波,王玉江,邢巍,陆天虹,周永清.CO在铂修饰的氧化钛电极上电催化氧化行为的研究[J].高等学校化学学报,2003(12):2263-2267.
[14] Dong B;He B L;Huang J;Gao G Y Yang Z Li H L .[J].Journal of Power Sources,2008,175:266.
[15] von Kraemer S;Wikander K;Lindbergh G;Lundblad A Palmqvist A E C .[J].Journal of Power Sources,2008,180:185.
[16] 王晓娟,马淳安,李国华,郑遗凡.WC/TiO2纳米复合材料的制备及其电催化性能[J].化学学报,2009(05):367-371.
[17] Li G H;Ma Ch A;Zheng Y F;Zhang W M .[J].Microporous and Mesoporous Materials,2005,85:234.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%