欢迎登录材料期刊网

材料期刊网

高级检索

锂离子电池玻璃态电解质同晶体型电解质相比较具有导电性各向同性、锂离子电导率高等诸多优点,开发在室温下具有较高的离子电导率及良好的化学、电化学稳定性的玻璃态电解质材料已经成为锂离子电池领域的重要研究方向之一.本文介绍了各种玻璃态电解质体系的导电特性及导电机理,并重点分析与讨论混合网络形成体效应在一些典型玻璃态电解质体系中的微观作用机理.本文还总结了混合网络形成体效应在玻璃态电解质中发生的前提条件,并指出深入研究玻璃态电解质的导电机理对开发出具有优异电化学性能的无机非晶固态电解质体系具有重要的指导意义.

参考文献

[1] Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414(15):359-367.
[2] Knauth P.Inorganic solid Li ion conductors:an overview.Solid State Ion.,2009,180(14/15/16):911-916.
[3] XU Xiao-Xiong,WEN Zhao-Yin.Glass and glass-ceramics solid electrolytes for lithium-ion battery.Journal ofInorganic Materials,2005,20(1):21-26.
[4] 郑洪河,曲群婷,刘云伟,等(ZHENG Hong-He,et al).无机固体电解质用于锂及锂离子电池研究进展.电源技术(Chinese Journal of Power Sources),2007,131(5):1015-1020.
[5] 吴锋,杨汉西.绿色二次电池:新体系与研究方法.北京:科学出版社,2009:80-81.
[6] 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:214-215.
[7] Rodrigues A C M,Keding R,Russel C.Mixed former effect between TeO2 and SiO2 in the Li2O-TeO2-SiO2 system.J.Non-Cryst.Solids,2000,273(1/2/3):53-58.
[8] Kim C E,Hwang H C,Yoon M Y,et al.Fabrication of a high lithium ion conducting lithium borosilicate glass.J.Non-Cryst.Solids,2011,357(15):2863-2867.
[9] Lee C H,Joo K H,Kim J H,et al.Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte.Solid State Ion.,2002,149(1/2):59-65.
[10] Lee Y I,Lee J H,Hong S H,et al.Li-ion conductivity in Li2O-B2O3-V2O5 glass system.Solid State Ion.,2004,175(1-4):687-690.
[11] Pradel A,Rau C,Bittencourt D,et al.Mixed glass former effect in the system 0.3Li2S-0.7[(1-x) SiS2-xGeS2]:a structural explanation.Chem.Mater.,1998,10(8):2162-2166.
[12] Tatsumisago M,Mizuno F,Hayashi A.All-solid-state lithium secondary batteries using sulfide-based glass-ceramic electrolytes.J.Power Sources,2006,159(1):193-199.
[13] Kamaya N,Homma K,Yamakawa Y,et al.A lithium superionic conductor.Nat.Mater.,2011,10(9):682-686.
[14] Yamashita M,Yamanaka H.Formation and ionic conductivity of Li2S-GeS2-Ga2S3 glasses and thin films.Solid State Ion.,2003,158(1/2):151-156.
[15] Minami K,Hayashi A,Tatsumisago M.Preparation and characterization of lithium ion conducting Li2S-P2S5-GeS2 glasses and glass-ceramics.J.Non-Cryst.Solids,2010,356(44-49):2666-2669.
[16] Liu Z Q,Huang F Q,Yang J H,et al.Preparation of new lithium ion composite electrolyte 3Li4SiS4-0.5La2S3 by mechanical milling.SolidState Sci.,2008,10(10):1429-1433.
[17] Tan G Q,Wu F,Chen R J,et al.Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries.J.Phys.Chem.C,2012,116(5):3817-3826.
[18] Wu F,Liu Y D,Chen R J,et al.Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries.J.Power Sources,2009,189(1):467-470.
[19] Cho K I,Lee S H,Cho K H,et al.Li2O-B2O3-P2O5 solid electrolyte for thin film batteries.J.Power Sources,2006,163(1):223-228.
[20] Cho K I,Lee S H,Shin D W,et al.Relationship between glass network structure and conductivity of Li2O-B2O2-P2O5 solid electrolyte.Electrochim.Acta,2006,52(4):1576-1581.
[21] Faizal A F A,Majid S R,Subban R H Y.Conductivity studies of Li2O-TiO2-P2O5 system.Mater Res.Innov.,2009,13(3):229-231.
[22] Okada T,Honma T,Komatsu T.Synthesis and Li+ ion conductivity of Li2O-Nb2Os-P2O5 glasses and glass-ceramics.Mater Res.Bull.,2010,45(10):1443-1448.
[23] Mascaraque N,Duráin A,Mu(n)oz E Effect of alumina on the structure and properties of Li2O-B2O3-P2O5 glasses.J.Non-Cryst.Solids,2011,357(16/17):3212-3220.
[24] Lee S H,Cho K I,Choi J B,et al.Phase separation and electrical conductivity of lithium borosilicate glasses for potential thin film solid electrolytes.J.Power Sources,2006,162(2):1341-1345.
[25] Morimoto S.Phase separation and crystallization in the system SiO2-Al2O3-P2O5-B2O3-Na2O glasses.J.Non-Cr,st.Solids,2006,352(8):756-760.
[26] 吴锋,刘亚栋,陈人杰,等(WUFeng,et al).LiBPON薄膜电解质的制备及电化学性能研究.电化学(Electrochemistry),2009,15(1):17-21.
[27] Raskar D,Rinke M T,Eckert H.The mixed network former effect in phosphate glasses:NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x.J.Phys.Chem.C,2008,112(32):12530-12539.
[28] Jin Y,Chen X,Huang X.Raman studies of lithium borophosphate glasses.J.Non-Cryst.Solids,1989,112(1/2/3):147-150.
[29] Doweida H,E1-Shahawi M S,Reicha F M,et al.Phase separation and physical properties of sodium borosilicate glasses with intermediate silica content.J.Phys.D:Appl.Phys.,1990,23(11):1441-1446.
[30] Maia L F,Rodrigues A C M.Electrical conductivity and relaxation frequency of lithium borosilicate glasses.Solid State Ion.,2004,168(1/2):87-92.
[31] E1-Egili K.Infrared studies of Na2O-B2OrSiO2 and Al2O3-Na2O-B2O3-SiO2 glasses.Phys.B,2003,325:340-348.
[32] Kluva'nek P,Klement R,Karacon M.Investigation of the conductivity of the lithium borosilicate glass system.J.Non-Cryst.Solids,2007,353(18-21):2004-2007.
[33] Lee C H,Sohn H J,Kim M G.XAS study on lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte.Solid State Ion.,2005,176(13/14):1237-1241.
[34] Sharma M V N V D,Sarma A V,Rao R B.Electrical conductivity,relaxation,and scaling analysis studies of lithium alumino phosphate glasses and glass ceramics.J.Mater Sci.,2009,44(22):5557-5562.
[35] Reddy C V K,Rao R B,Mouli K C,et al.Electrical conductivity,electrical modulus,and scaling studies of Li2O-Ga2O3-P2O5 glass electrolyte doped with selenium,Ions.Ion.,2012,18(1/2):65-73.
[36] Gedam R S,Deshpande V K.An anomalous enhancement in the electrical conductivity of Li2O∶ B2O3∶ Al2O3 glasses.Solid State Ion.,2006,177(26-32):2589-2592.
[37] Gedam R S,Deshpande V K.Enhancement in electrical conductivity of Li2O∶B203∶V2O5 glasses.Bull.Mater.Sci.,2009,32(1):83-87.
[38] Christensen R,Byer J,Olson G,et al.The glass transition temperature of mixed glass former 0.35Na2O+0.65[xB2O3+ (1-x)P2O5]glasses.J.Non-Cryst.Solids,2012,358(4):826-831.
[39] Christensen R,Byer J,Olson G,et al.The densities of mixed glass former 0.35Na2O+0.65[xB2O3+ (1-x)P2O5]glasses related to the atomic fractions and volumes of short range structures.J.Non-Cryst.Solids,2012,358(4):583-589.
[40] Seino Y,Takada K,Kim B C,et al.Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode.SolidState Ion.,2005,176(31-34):2389-2393.
[41] Yamamoto H,Machida N,Shigematsu T.A mixed-former effect on lithium-ion conductivities of the Li2S-GeS2-P2S5 amorphous materials prepared by a high-energy ball-milling process.Solid State Ion.,2004,175(1-4):707-711.
[42] Kanno R,Murayama M.Lithium ionic conductor thio-LISICON the Li2S-GeS2-P2S5 system.J.Electrochem.Soc.,2001,148(7):A742-A746.
[43] Matsumura T,Nakano K,Kanno R,et al.Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries.J.Power Sources,2007,174(2):632-636.
[44] Kobayashi T,Yamada A,Kanno R.Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte,thio-LISICON.Electrochim.Acta,2008,53(15):5045-5050.
[45] Trevey J E,Jung Y S,Lee S H.High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries.Electrochim.Acta,2011,56(11):4243-4247.
[46] Trevey J E,Jung Y S,Lee S H.Preparation of Li2S-GeS2-P2S5 electrolytes by a single step ball milling for all-solid-state 1Lithium secondary batteries.J.Power Sources,2010,195(15):4984-4989.
[47] El-All S A,Ezz-Eldin F M.Electrical conductivity of gamma-irradiated V2O5 doped lithium disilicate glasses doped and their glass-ceramics derivatives.Nucl.Instrum.Meth.Phys.Res.B,2010,268(1):49-56.
[48] Mekki A,Khattak G D,Holland D,et al.Structure and magnetic properties of vanadium-sodium silicate glasses.J.Non-Cryst.Solids,2003,318(1/2):193-201.
[49] Garbarczyk J E,Wasiucionek M,Józwiak P,et al.Studies of Li2O-V2O5-P2O5 glasses by DSC,EPR and impedance spectroscopy.SolidState Ion.,2002,154-155:367-373.
[50] Garbarczyk J E,Jozwiak P,Wasiucionek M,et al.Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization.SolidState Ion.,2004,175(1-4):691-694.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%