二氧化钛/钛酸盐纳米材料的晶型、尺寸、形貌和微结构等特征对物理化学性能有着至关重要的影响.晶体生长过程包括晶型转变和形貌演化等行为.本文综述了近年来在二氧化钛/钛酸盐纳米粉体材料晶型与形貌的控制合成工作中,材料晶型转变和形貌演化行为方面的研究进展.对奥斯特瓦尔德规则、奥斯特瓦尔德熟化机制、柯肯达尔效应和定向附着生长模式等重要的机理进行了阐述,并将晶体生长机理应用于二氧化钛/钛酸盐纳米粉体材料的合成过程中.不仅利用上述晶体生长机理解释了不同晶型、不同形貌二氧化钛/钛酸盐纳米粉体材料的生成原因,并且利用晶体生长机理指导二氧化钛/钛酸盐纳米粉体材料晶型与形貌的控制合成工作.
参考文献
[1] | ZHANG Qing-Hong.Progress on TiO2-based nanomaterials and its utilization in the clean energy technology.Journal of Inorganic Materials,2012,27(1):1-10. |
[2] | Linsebigler A L,Lu G Q,John T Y,Jr.Photocatalysis on TiOn surfaces:principles,mechanisms,and selected results.Chem.Rev.,1995,95(3):735-758. |
[3] | Wu Y M,Zhang J L,Xiao L,et al.Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants.Appl.Catal.B,2009,88(3):525-532. |
[4] | Wei C,Lin W Y,Zainal Z,et al.Bactericidal activity of TiO2 photocatalyst in aqueous media:toward a solar-assisted water disinfection system.Environ.Sci.Technol.,1994,28(5):934-938. |
[5] | Desilvestro J,Graetzel M,Kaven L.Highly efficient sensitization of titanium dioxide.J.Am.Chem.Soc.,1985,107(10):2988-2990. |
[6] | DING Hui,ZHANG Nuo,RONG Fei,et al.Preparation,characterization and bactericidal activity of N-F-codoped TiO2 film.Journal of Inorganic Materials,2011,26(5):517-522. |
[7] | ZHOU Wen-Qian,LU Yu-Ming,CHEN Chang-Zhao,et al.Effect of Li-doped TiO2 compact layers for dye sensitized solar cells.Journal of Inorganic Materials,2011,26(8):819-822. |
[8] | Tong S F,Jin H Y,Zheng D F.et al.Investigations on copper-titanate intercalation materials for amperometric sensor.Biosens.Bioelectron,2009,24(8):2404-2409. |
[9] | Ntho T A,Anderson J A,Scurrell M S.CO oxidation over titanate nanotube supported Au:Deactivation due to bicarbonate.J.Catal.,2009,261(1):94-100. |
[10] | Yang D J,Zheng Z F.Zhu H Y,et al.Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water.Adv.Mater,2008,20(14):2777-2781. |
[11] | Wang Y M,Du G J,Liu H,et al.Nanostructured sheets of Ti-Onanobelts for gas sensing and antibacterial applications.Adv.Funct.Mater,2008,18(7):1131-1137. |
[12] | ZHOU Wen-Qian,LU Yu-Ming,CHEN Chang-Zhao,et al.Synthesis and photocatalytic activity of vanadium doped titania hollow microspheres.Journal of Inorganic Materials,2009,24(4):671-674. |
[13] | YU Wei-Wei,ZHANG Qing-Hong,SHI Guo-Ying,et al.Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.Journal of Inorganic Materials,2011,26(7):747-752. |
[14] | Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature,2000,407(6803):496-499. |
[15] | Mullin J W.Crystallization,4th Ed.Butterworth Heinemann,Boston,2001. |
[16] | Santen R A V.The Ostwald step rule.J.Phys.Chem.,1984,88(24):5768-5769. |
[17] | Cushing B L,Kolesnichenko V L,O'Connor C J.Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.,2004,104(9):3893-3946. |
[18] | Smigelskas A D,Kirkendall E O.Zinc diffusion in alpha brass.Trans.AIME,1947,171:130-142. |
[19] | Banfield J F,Welch S A,Zhang H Z,et al.Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.Science,2000,289(5480):751-754. |
[20] | Penn R L,Banfield J F.Imperfect oriented attachment:dislocation generation in defect-free nanocrystals.Science,1998,281(5379):969-971. |
[21] | Zhao B,Chen F,Huang Q W,et al.Brookite TiO2 nanoflowers.Chem.Commun.,2009,34:5115-5117. |
[22] | Zhao B,Chen F,Jiao Y C,et al.Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment.J.Mater.Chem.,2010,20(37):7990-7997. |
[23] | Jiao Y C,Zhao B,Chen F,et al.Insight into the crystal lattice formation of brookite in aqueous ammonia media:the electrolyte effect.Cryst.Eng.Comm.,2011,13(12):4167-4173. |
[24] | Peng X G,Manna L,Yang W D,et al.Shape control of CdSe nanocrystals.Nature,2000,404(6773):59-51. |
[25] | CHEN Chao,WANG Zhi-Yu.Synthesis and crystal growth mechanism of titanium dioxide nanorods.Journal of Inorganic Materials,2012,27(1):45-48. |
[26] | Wang Y W,Xu H,Wang X B,et al.A general approach to porous crystalline TiO2,SrTiO3,and BaTiO3 spheres.J.Phys.Chem.B,2006,110(28):13835-13840. |
[27] | Zhao B,Chen F,Qu W W,et al.The evolvement of pits and dislocations on TiO2-B nanowires via oriented attachment growth.J.Solid State Chem.,2009,182(8):2225-2230. |
[28] | Du N,Zhang H,Chen B D,et al.Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature.J.Phys.Chem.C,2007,111(34):12677-12680. |
[29] | Xu H L,Wang W Z,Zhu W,et al.Hierarchical-oriented attachment:from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves.Cryst.Growth Des.,2007,7(12):2720-2724. |
[30] | Alexandrou I,Ang D K H,Mathur N D,et al.Encapsulated nanowires formed by nanotube-assisted oriented attachment.Nano Lett.,2004,4(11):2299-2302. |
[31] | Yang L X,Luo S L,Su F,et al.Carbon-nanotube-guiding oriented growth of gold shrubs on TiO2 nanotube arrays.J.Phys.Chem.C,2010,114(17):7694-7699. |
[32] | Kazuma E,Matsubara K,Kelly K L,et al.Bi-and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces.J.Phys.Chem.C,2009,113(12):4758-4762. |
[33] | Adachi M,Murata Y,Takao J,et al.Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism.J.Am.Chem.Soc.,2004,126(45):14943-14949. |
[34] | Ostwald W.Studien uber die bildung und umwandlung fester korper.ZPhys.Chem.,1897,22:289-330. |
[35] | Threlfall T.Structural and thermodynamic explanations of Ostwald's Rule.Org.Process Res.Dev.,2003,7(6):1017-1027. |
[36] | Zhao B,Chen F,Gu X N,et al.Organic stabilizer-free synthesis of layered protonic titanate nanosheets.Chem.Asian J.,2010,5(7):1546-1549. |
[37] | Talapin D V,Rogach A L,Hasse M,et al.Evolution of an ensemble of nanoparticles in a colloidal solution:theoretical study.J.Phys.Chem.B,2001,105(49):12278-12285. |
[38] | Redl F X,Cho K S,Murry C B,et al.Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.Nature,2003,423(6943):968-971. |
[39] | Puntes V F,Krishnan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:the case of cobalt.Science,2001,291(5511):2115-2117. |
[40] | Wang Y Q,Hu G Q,Duan X F,et al.Microstructure and formation mechanism of titanium dioxide nanotubes.Chem.Phys.Lett.,2002,365(5):427-431. |
[41] | Yao B D,Chan Y F,Zhang X Y,et al.Formation mechanism of TiO2 nanotubes.Appl.Phys.Lett.,2003,82(2):281-283. |
[42] | Tsai C C,Teng H.Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments.Chem.Mater.,2006,18(2):367-373. |
[43] | Yang W D,Hung K M.Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process.J.Mater.Sci.,2002,37(7):1337-1342. |
[44] | Saponjic Z V,Dimitrijevic N M,Tiede D M,et al.Shaping nanometer-scale architecture through surface chemistry.Adv.Mater.,2005,17(8):965-971. |
[45] | Wu D,Liu J,Zhao X N,et al.Sequence of events for the formation of titanate nanotubes,nanofibers,nanowires,and nanobelts.Chem.Mater.,2006,18(2):547-553. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%