通过对两种天然鳞片石墨进行微膨胀处理得到微膨石墨, 然后以微膨石墨为基体采用化学气相沉积(CVD)法于微膨石墨的孔洞结构中原位生长碳纳米管, 制备了碳纳米管/微膨石墨复合负极材料. 电化学测试结果表明两种复合材料分别具有443和477 mAh/g的首次可逆容量. 两种复合材料在0.2C倍率下循环充放电30次后容量均能保持95%以上; 在1C下循环充放电50次后, 可逆容量分别稳定在259和195 mAh/g. 微膨胀处理形成的微纳米级孔洞以及原位碳纳米管的网络结构, 提供了更多的储锂空间, 并能够有效地缓冲电极材料在充放电时的体积变化; 电解质溶液浸润在纳米孔洞中, 有利于缩短锂离子的扩散路径, 提高倍率循环性能; 同时原位生长的类似常春藤形的碳纳米管可以起到桥梁的作用, 避免“孤岛”的形成, 增强了复合材料的导电性能.
Micro-expanded?flake?graphite (MEFG) and micro-expanded?spherical?graphite (MESG) were prepared from two kinds of natural graphite by intercalation reaction and rapid heating processes. Then carbon nanotubes/ micro-expanded?graphite (CNTs/MEG) composites were prepared by chemical vapor deposition (CVD) process, for which CNTs were grown in the pores of micro-expanded?graphite. Electrochemical test results?show that first discharge/ charge capacities of CNTs/MEFG and CNTs/MESG could respectively accommodate up to 443 and 477 mAh/g. Both of the prepared CNTs/MEG composites keep more than 95% capacities after 30 cycles at the rate of 0.2C and their capacities are stable at?259 and 195 mAh/g after 50 cycles at 1C rate, respectively. The nanoporous structure and the CNTs network can improve the discharge capacities and effectively?buffer the volumetric change of the composite electrode materials in the charge/discharge process. The diffusion path of Li+ can be reduced because of the electrolyte solution that filled in the nanopores, which significantly improves the rate capability of the electrodes. In addition, the growing ivy-like CNTs could improve the electric conductive property of the composites in the charge/discharge process.
参考文献
[1] | Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657.[2] CHEN Chang-Guo, CHEN Jia, TANG Yan-Qiu, et al. Recent progress in the structure of carbon cathode materials for lithium ion batteries. Journal of Inorganic Materials, 2003, 18(6): 1153-1157.[3] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci., 2009, 2: 638-654.[4] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications. Carbon, 2001, 39(9): 1287-1297. [5] Sethuraman V A, Hardwick L J, Srinivasan V, et al. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources, 2010, 195(11): 3655-3660.[6] LIU Yu, WANG Bao-Feng, XIE Jing-Ying, et al. Electrochemical characteristic of SEI in secondary lithium batteries. Journal of Inorganic Materials, 2003, 18(2): 307-312.[7] Lu M, Cheng H, Yang Y. A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochimica Acta, 2008, 53: 3539-3546. [8] Moon S H, Jin W J, Kim T R, et al. Performance-of graphite electrode modified with carbon nanofibers for lithium ion secondary battery. J. Ind. Eng. Chem., 2005, 11(4): 594-602.[9] LIU Ye-Xiang, ZHOU Xiang-Yang, LI Jie, et al. Li+ intercalation/ deintercalation process in natural graphite. The Chinese Journal of Nonferrous Metals, 2002, 12(6): 1257-1262. [10] Nozahi H, Nagarka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J. Power Sources, 2009, 194(1): 486-493.[11] Jang S M, Miyawaki J,Tsuji U, et al. Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Materials, 2010, 25(2): 89-95.[12] ZHOU De-Feng, Ma Yue, ZHAO Yan-Ling, et al. Electrochemical performance of the composite materials of nano-carbon and graphite- carbon. Journal of Inorganic Materials, 2004, 19(5): 1111-1117.[13] Makovicka J,Sedlarikova M, Arenillas A, et al. Expanded graphite as an intercaltion anode material for lithium systems. J. Solid State Electrochem, 2009, 13(9): 1467-1471.[14] Yang S B, Song H H, Chen X H. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium- ion batteries. Electrochem. Commun., 2006, 8(1): 137-142.[15] 曾燮榕, 王明福, 谢盛辉, 等. 可膨胀石墨的制备方法. 中国发明专利, C01B31/04, 200410027920, 2005.03.16.[16] YANG Shao-Bin, FEI Xiao-Fei, JIANG Na. Influences of increasing interlayer space on the properties of lithium storage of natural graphite. Acta Chimica Sinica, 2009, 67(17): 1995-2000.[17] Wei Xing-Hai, Zhang Jin-Xi, Shi Jing-Li, et al. Preparation of sulfur- free highly expanded graphite. New Carbon Materials, 2004, 19(1): 45-47.[18] Novak P, Ufheil J, Buqa H, et al. The importance of the active surface area of graphite materials in the first lithium intercalation. J. Power Sources, 2007, 174(2): 1082-1085.[19] Lahiri I, Oh S W, Hwang J Y, et al. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Nano, 2010, 4(6): 3440-3446.[20] Tokumitsu K, Fujimoto H, Mabuchi A, et al. High capacity carbon anode for Li-ion battery: a theoretical explanation. Carbon, 1999, 37(10): 1599-1605.[21] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-2053.[22] Abouimrane A, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. 2010, 114(29): 12800-12804.[23] Eom J Y, Park J W, Kwon H S. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources, 2006, 157(1): 507-514.[24] Zou L, Kang F Y, Zheng Y P, et al. Modi-ed natural -ake graphite with high cycle performance as anode material in lithium ion batteries. Electrochemical Acta, 2009, 54(15): 3930-3934.[25] Sawai K, Ohzuku T. Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J. Electrochemical. Soc., 2003, 150(6): A674-1-5.[26] ZHANG Xu-Gang, LIU Min, WANG Zuo-Ming, et al. Applications of carbon nanotube composite as anode conductive additives in lithium ion batteries. Carbon Techniques, 2008, 27(4): 10-13. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%