欢迎登录材料期刊网

材料期刊网

高级检索

设计并制备了PEO-LATP/LAGP陶瓷复合电解质. 使用NASICON结构的Li1.4Al0.4Ti1.6(PO4)3 (LATP)或 Li1.5Al0.5Ge1.5(PO4)3 (LAGP)作为陶瓷基体, 以PEO为粘结剂, 得到了均匀、厚度仅为20 μm的复合电解质膜. 通过电化学性能表征发现当w(LATP/LAGP):w(PEO)=7:3时, 复合电解质膜具有最高的室温电导率, 达到0.186 mS/cm (PEO-LATP)与0.111 mS/cm (PEO-LAGP). 通过充放电循环实验表明, Li/复合电解质/LiCo1/3Ni1/3Mn1/3O2电池的首次放电容量达170 mAh/g. 使用PEO-LATP复合电解质的电池在循环时有较大的容量衰减, 而使用PEO-LAGP复合电解质则循环性能有明显的改善, 在10次循环后仍保持在150 mAh/g.

A PEO-LATP/LAGP composite electrolyte for lithium batteries was designed and prepared. Uniformly composite electrolyte membrane with thickness of 20 μm was obtained by assembling Li1.4Al0.4Ti1.6(PO4)3 (LATP) or Li1.5Al0.5Ge1.5(PO4)3 (LAGP) as ceramic substrate and PEO as binder. Highest room-temperature conductivities were achieved for the sample prepared with w(ceramics):w(PEO)=7:3. Electrochemical analysis showed that the conductivity reached 0.186 mS/cm for PEO-LATP and 0.111 mS/cm for PEO-LAGP. Cycling performances of  170 mAh/g was obtained for the first discharge capacity of the Li/composite electrolyte/LiCo1/3Ni1/3Mn1/3O2 cell. Sharp decrease of cycling capacity was observed for the cell using PEO-LATP membrane. The cycling performance of the PEO-LAGP based cell was greatly improved with 150 mAh/g remained after 10 cycles.

参考文献

[1] 郭炳坤, 徐 徽, 王先友, 等. 锂离子电池. 长沙: 中南大学出版社, 2002: 1-3.

[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587-603.

[3] Scrosati B, Garche J. Lithium batteries: status, prospects and future. J. Power Sources, 2010, 195(9): 2419-2430.

[4] Anantharamulu N, Koteswara Rao K, Rambabu G, et al. A wide-range review of nasicon type materials. J. Mater. Sci., 2011, 46(9): 2821-2837.

[5] 朱永明, 任雪峰, 李 宁. 无机固态锂离子电解质的研究进展. 化学通报, 2010(12): 1073-1079.

[6] Xu X, Wen Z, Gu Z, et al. Lithium ion conductive glass-ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (x=0-1.0). Solid State Ionics, 2004, 171(3/4): 207-213.

[7] Xu X, Wen Z, Gu Z, et al. Preparation of nanostructured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by a citrate process. Chem. Lett., 2005, 34(4): 512-513.

[8] Xu X, Wen Z, Yang X, et al. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics, 2006, 177(26-32): 2611-2615.

[9] Xu X, Wen Z, Wu J, et al. Preparation and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted Sol-Gel method. Solid State Ionics, 2007, 178(1/2): 29-34.

[10] Choi B. Optical microscopy study on the crystallization in PEO-salt polymer electrolytes. Solid State Ionics, 2004, 168(1/2): 123-129.

[11] 何元锦, 艾娇艳, 肖舜通. 聚合物电解质的研究进展. 塑料科技, 2009, 37(12): 88-92.

[12] Quartarone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolyte. Solid State Ionics, 1998, 110(1/2): 1-14.

[13] Armand M. Polymer solid electrolytes: an overview. Solid State Ionics, 1983, 9-10(12): 745-754.

[14] Stoeva Z, Martin-Litas I, Staunton E, et al. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J. Am. Chem. Soc., 2003,125(15): 4619-4626.

[15] Aono H, Sugimoto E, Sadaoka Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc., 1990, 137(4): 1023-1027.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%