采用电场辅助热扩散工艺制备了银纳米晶掺杂玻璃基片, 用非水解溶胶?凝胶法在基片上制备了Er3+/Yb3+共掺碲酸盐薄膜, 研究结果表明, 玻璃基片中的银纳米颗粒对Er3+/Yb3+共掺碲酸盐薄膜具有明显的荧光增强效果. 利用菲克第一、第二定律、欧姆定律、泊松方程对电场辅助热扩散过程进行了数值模拟, 计算了玻璃内银的浓度分布. 结果表明: 玻璃内银纳米颗粒的总量越大、近玻璃表面银纳米颗粒的浓度和粒度越大、银耗尽层的厚度越小, 荧光增强效果越好. 此外, 不仅近玻璃表面的银纳米颗粒可以产生荧光增强效应, 而且远离表面的银纳米颗粒也有荧光增强效应.
The glass substrates doped with Ag nanoparticles (NPs) were fabricated by the field-assisted thermal diffusion (FATD) process. The Er3+/Yb3+ co-doped tellurite thin films were deposited on these substrates via nonhydrolytic Sol-Gel method. It was found that the luminescence of the thin film was significantly enhanced by the Ag NPs embedded in the glass substrate. The distribution of Ag in the substrate after FATD process was calculated by numerical simulating on base of Fick’s first and second law, Ohm’s law and Poisson equation. The enhancement factor increased with the increase of concentration and diameter of Ag NPs near the glass surface. When the total amount of NPs decreased and the thickness of space-charge layer increased, the enhancement effect became weak. In addition, besides the Ag NPs near the glass surface the Ag NPs far from the glass surface could also contribute to the luminescence enhancement.
参考文献
[1] | Battisha I K. Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+. J. Non-Cryst. Solids, 2007, 353(18-21): 1748-1754.[2] Chen S Y, Ting C C, Hsieh W F. Comparison of visible fluorescence properties between Sol-Gel derived Er3+-Yb3+ and Er3+-Y3+ co-doped TiO2 films. Thin Solid Films, 2003, 434(1/2): 171-177.[3] Ho H P, Wong W W, Wu S Y. Multilayer optical storage disk based on the frequency up-conversion effect from rare-earth ions. Opt. Eng., 2003, 42(8): 2349-2353.[4] Kassab L R P, Bomfim F A, Martinelli J R, et al. Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Appl. Phys. B, 2009, 94(2): 239-242.[5] Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl. Phys. Lett., 2008, 92(13): 132105.[6] Verhagen E, Kuipers L, Polman A. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Express, 2009, 17(17): 14586-14598.[7] Pivin J C, Sendova-Vassileva M, Lagarde G, et al. Optical activation of Eu3+ ions by Ag nanoparticles in ion exchanged silica-Gel films. J. Phys. D: Appl. Phys., 2006, 39(14): 2955-2958.[8] Marques A C, Almeida R M. Er photoluminescence enhancement in Ag-doped Sol-Gel planar waveguides. J. Non-Cryst. Solids, 2007, 353(27): 2613-2618.[9] Lin J, Huang W H, Lei S H, et al. Preparation of silver nano-crystal patterns in oxide glasses under electric field accompanied by heat treatment. J. Ceram. Process. Res., 2008, 9(4): 416-420.[10] Cattaruzza E, Battaglin G, Gonella F, et al. Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange. Mater. Sci. Eng. B, 2008, 149(2): 195-199.[11] Gonella F, Canton P, Cattaruzza E, et al. Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses. Mater. Sci. Eng. C, 2006, 26(5/6/7): 1087-1091.[12] Kapila D, Plawsky J L. Diffusion processes for integrated waveguide fabrication in glasses a solid-state electrochemical approach. Chem. Eng. Sci., 1995, 50(16): 2589-2600.[13] Wei H Y, Lin J, Feng Z B, et al. Enhancement of up-conversion luminescence from Er3+-Yb3+-codoped tellurite films by Ag nanoparticles embedded in glass substrates. Mater. Sci. Eng. B, 2010, 172(3): 321-326.[14] 徐 瑞.材料科学中数值模拟与计算.哈尔滨: 哈尔滨工业大学出版社, 2005: 129.[15] 贺蕴秋, 王德平, 徐振平.无机材料物理化学.北京: 化学工业出版社, 2005: 146-148, 158.[16] 叶齐政, 孙 敏.电磁场.武汉: 华中科技大学出版社, 2008: 30, 46, 96, 98, 185-186.[17] Prieto X, Srivastava R, Linares J, et al. Prediction of space-charge density and space-charge field in thermally ion-exchanged planar surface waveguides. Opt. Mater., 1996, 5(1/2): 145-151.[18] 杨学桢.数学建模方法.保定: 河北大学出版社, 2000: 57-58.[19] Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescenceand plasmon emission. Anal. Biochem., 2005, 337(2):171-194.[20] Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst, 2008, 133(10): 1308-1346. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%