以非离子型表面活性剂P123和三甲基苯的微乳液为模板剂合成介孔SiO2粉体. 以此粉体为原料, 经干压成型、烧结制备多孔SiO2块材. 分别用AlOOH溶胶和TiO2溶胶包覆多孔SiO2粉体, 制成多孔SiO2/Al2O3块材和SiO2/TiO2块材. 采用XRD、SEM、TEM、N2吸附法和阿基米德排水法对所制粉体和块材进行了表征, 并研究了块材的热稳定性. 结果表明, 600~700℃烧结的多孔SiO2基块材的孔隙率为74%~76%. 与多孔SiO2块材相比, 在800~1000℃范围内, SiO2/Al2O3块材的热稳定性显著提高, SiO2/TiO2块材的热稳定性在800~900℃范围内有一定改善.
Porous monoliths with high porosity and improved high temperature stability are required in heat insulation. Mesoporous SiO2 powder was synthesized from tetraethyl orthosilicate using oil-in-water microemulsions composed of non-ionic surfactant P123 and 1,3,5-trimethylbenzene as template. Porous SiO2 monoliths were prepared from the mesoporous SiO2 powder by dry pressing followed by sintering. Porous SiO2/Al2O3 monoliths and SiO2/TiO2 monoliths were prepared from mesoporous SiO2 powders coated with boehmite Sol and titania Sol respectively. XRD, SEM, TEM, N2 adsorption and Archimedes method were employed to characterize the powders and the monoliths. The thermal stability of the monoliths was studied. The porosity of the silica-based monoliths sintered at 600-700℃ is about 74%?76%. Compared with SiO2 monolith, porous SiO2/Al2O3 monolith has much better thermal stability at 800-1000℃ and porous SiO2/TiO2 monolith has an improved thermal stability at 800-900℃. It is indicated that alumina coating on porous silica particle surface can improve the high temperature stability of SiO2/Al2O3 monolith.
参考文献
[1] | Ping E W, Wallace R, Pierson J, et al. Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous and Mesoporous Materials, 2010, 132(1/2): 174-180.[2] Han Y, Lee S S, Ying J Y. Spherical siliceous mesocellular foam particles for high-speed size exclusion chromatography. Chem. Mater., 2007, 19(9): 2292-2298.[3] Zhang F Z, Takeaki K, Masayoshi F J, et al. Gelcasting fabrication of porous ceramics using a continuous process. Journal of the European Ceramic Society, 2006, 26(4/5): 67-71.[4] 邓 蔚, 钱立军. 纳米孔硅质绝热材料. 宇航材料工艺, 2002 , 32(1): 1-7.[5] 罗森诺W M. 传热学基础手册. 北京: 科学出版社, 1992: 304-341.[6] Jones S M. Aerogel: space exploration applications. J. Sol-Gel Sci. Technol., 2006, 40(2/3): 351-357.[7] Schmidt-Winkel P, Zhao D Y, Stucky G D, et al. Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc., 1999, 121(1): 254-255.[8] Schmidt-Winkel P, Lukens W W, Yang P D, et al. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater., 2000, 12(3): 686-696.[9] 冷映丽, 沈晓东, 崔 升, 等. 不同制备方法对TiO2-SiO2复合气凝胶结构的影响. 化工新型材料, 2008, 36(8): 57-58.[10] 武 纬, 冯 坚, 张长瑞. Al2O3-SiO2气凝胶的制备及性能研究. 材料导报, 2008, 22(S3): 349-351.[11] Aravind P R, Mukundan P, Krishna P, et al. Mesoporous silica- alumina aerogels with high thermal pore stability through hybrid Sol-Gel route followed by subcritical drying. Microporous and Mesoporous Materials, 2006, 96(1/2/3): 14-20.[12] 吴建锋, 徐晓虹, 张 欣. 以硝酸铝为原料制备铝溶胶的研究. 陶瓷学报, 2007, 28(3): 155-159.[13] 王英锋, 李 雪, 刘云义. 溶胶-凝胶法制备二氧化钛溶胶. 合成化学, 2008, 16(6): 705-708.[14] 李明月, 周健儿, 马光华. 溶胶-凝胶法制备Al2O3纳米粉. 中国陶瓷, 2002, 38(5): 4-6.[15] Yang J, Zhang J, Zhu L W, et al. Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. Journal of Hazardous Materials, 2006, 137(2): 952-958. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%