欢迎登录材料期刊网

材料期刊网

高级检索

采用坩埚下降法在非真空密闭条件下生长出尺寸为9mm×68mm的1mol% Er3+: LiYF4单晶材料, 测试了样品的折射率、透过光谱、吸收光谱、以及在980nm和792nm激光泵浦下的近红外和中红外荧光光谱. 应用Judd-Ofelt理论计算了Er3+离子在LiYF4晶体材料中的强度参数(?t, t=2,4,6)、能级跃迁振子强度(fcal)、自发辐射跃迁几率(A)、荧光分支比(B)、辐射寿命(trad)等光谱参数, 讨论了其近红外和中红外的荧光特性. 结果表明, 在980nm和792nm激光泵浦下观察到了1.5um近红外荧光和3.0um中红外荧光, 分别对应于Er3+: 4I13/24I15/24I11/24I13/2跃迁, 并分析了3.0um中红外荧光强度较弱的可能原因.

Er3+: LiYF4 single crystal was grown by the Bridgman method under non-vacuum atmosphere. The single crystal was in size of 9mm×68mm with 1mol% concentration of Er3+ ions. Optical properties of the single crystal including the refractive index, UV and IR transmission spectra, absorption spectrum, near-infrared emission spectrum under 980nm excitation and mid-infrared emission spectrum under 792nm excitation were measured. The intensity parameters (?t, t=2,4,6), oscillator strength(fcal), transition probabilities (A), branching ratios (B) and radiation lifetimes (trad) of Er3+ ions in the LiYF4 were estimated by using the Judd-Ofelt theory. The near- and mid-infrared fluorescence properties of the sample were discussed. The results indicate that near infrared fluorescence at 1.5μm corresponding to the Er3+: 4I13/24I15/2 transition is observed under 980nm excitation while mid-infrared fluorescence at 3.0μm corresponding to the Er3+: 4I11/24I13/2 transition is detected under 792 nm excitation. The reason that caused the weakening of fluorescence at 3.0μm is analyzed.

参考文献

[1] Sorokina I T, Vodopyanov K L. Solid-State Mid-Infrared Laser Sources. New York: Springer, 2003: 219-255.

[2] Moizan V, Nazabal V, Troles J, et al. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy. Opt. Mater., 2008, 31(1): 39-46.

[3] Jenkins N W, Bowman S R, Connor S O, et al. Spectroscopic characterization of Er-doped KPb2Cl5 laser crystals. Opt. Mater., 2003, 22(4): 311-320.

[4] Lepoutre S, Boyer D, Mahiou R. Structural and optical characterizations of Sol-Gel based fluorides materials: LiGdF4: Eu3+ and LiYF4: Er3+. Opt. Mater., 2006, 28(6/7): 592-596.

[5] 周海芳, 王国富. 掺Er3+离子Sr3Y2(BO3)4晶体光谱学性能的研究. 光学与光电技术, 2009, 7(6): 48-51.

[6] Gomes L, Librantz A F H, Jagosich F H, et al. Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er3+: LiYF4 crystal. J. Appl. Phys., 2009, 106(10): 103508-1-9.

[7] Sanamyan T, Simmons J, Dubinskii M. Efficient cryo-cooled 2.7--m Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level. Laser Phys., 2010, 7(8): 569-572.

[8] Sana J, Cases R, Alcala R. Optical properties of Tm3+ in fluorozirconate glass. Journal of Non-Crystalline Solids, 1987, 93(2/3): 377-386.

[9] Judd B R. Optical absorption intensities of rare-earth ions. Phys. Rev., 1962, 127(3): 750-761.

[10] Ofelt G S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys., 1962, 37(3): 511-520.

[11] Tanabe S, Ohyagi T, Soga N, et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B, 1992, 46(6): 3305-3310.

[12] Krupke W F. Optical absorption and fluorescence intensities in several rare earth-doped Y2O3 and LaF3 single crystals. Phys. Rev., 1966, 145(3): 325-337.

[13] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys., 1968, 49(40): 4424-4442.

[14] Xu S Q, Yang Z M, Dai S X, et al. Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier. Journal of Alloys and Compounds, 2003, 361(1/2): 313-319.

[15] Zhao Y W, Gong X H, Chen Y J, et a1. Spectroscopic properties of Er3+ ions in Li6Y(BO3)3 crysta1. Appl. Phys. B, 2007, 88(1): 51-55.

[16] 张守超, 阮永丰, 李广慧, 等. 上转换激光晶体Er: BaY2F8的生长与光谱分析. 人工晶体学报, 2008, 37(6): 1493-1498.

[17] 王庆元, 张思远, 武士学, 等. 用Judd-Ofelt 理论计算YAG: Er3+ 晶体中Er3+ 离子的光谱参数. 光学学报, 1986, 6(4): 307-312.

[18] 赵谡玲, 侯延将, 裴晓将, 等(ZHAO Su-Ling, et al). 水热法合成YLiF4: Er3+的上转换发光. 中国稀土学报(J. Rare Earth), 2006, 24(2): 152-157.

[19] McCumber D E. Theory of phonon-terminated optical masers. Phys. Rev. A, 1964, 134(2): A299-A306.

[20] 李毛和, 胡和方, 祈长鸿. 一种稀土离子发射截面的计算方法. 光学学报, 2001, 21(5): 626-629.

[21] Camargo M B, Gomes L, Morato S P. Quantitative analysis of erbium luminescence in LiYF4 doped with low(1.41%) and high (38.5%) Er+3 concentrations. Opt. Mater., 1995, 4(5): 597-607.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%