欢迎登录材料期刊网

材料期刊网

高级检索

分别以Ti-B4C-C体系和Ti-B4C-C-Al体系复合粉为反应原料, 利用自反应喷射成形技术制备Ti(C,N)-TiB2基复合陶瓷坯件. 利用XRD、SEM、EDS、TEM等方法, 研究分析了向喷射体系中加入5wt%金属Al对喷射沉积坯件组织结构、主要力学性能的影响及其原因. 结果表明, Ti-B4C-C体系的喷射沉积坯件主要由TiC0.3N0.7和TiB2主相及TiO2副产物相组成, 其致密度、维氏硬度、弯曲强度、断裂韧性等性能分别为97.2%、17.3GPa、387MPa、6.0MPa·m1/2; 喷射体系中添加5wt%金属Al后, 喷射沉积坯件的主相仍为TiC0.3N0.7和TiB2, 但副产物相中不含有害相TiO2, 而增加了对复合材料有益的Al2O3与Ti3Al相, 坯件内TiB2颗粒长径比增大, 出现大量长棒状晶, 并使坯件的致密度、维氏硬度、弯曲强度、断裂韧性等性能也分别提高到97.7%、20.6GPa、425MPa、7.3MPa·m1/2.可见金属Al的添加可有效抑制喷射过程中Ti的氧化, 明显改善喷射沉积坯件的综合力学性能.

With composite powders of Ti-B4C-C and Ti-B4C-C-Al systems as reactants, Ti(C, N)-TiB2 -based composite ceramic preforms were prepared by self-reactive spray forming technology. XRD, SEM, EDS and TEM were used to investigate the influence of 5wt% Al addition on the structure and properties of the preforms. It was shown that the performs made from Ti-B4C-C system were mainly composed of TiC0.3N0.7 and TiB2, with by-product phase of TiO2. Relative density, Vickers hardness, flexural strength and fracture toughness of Ti-B4C-C preforms were 97.2%, 17.3GPa, 387MPa and 6.0MPa·m1/2, respectively. By adding 5wt%Al in the sprayed system, the by-product of the preforms was the desirable phases of Al2O3 and Ti3Al, not TiO2, though the main phases of Ti-B4C-C-Al preforms remained to be TiC0.3N0.7 and TiB2. The length to diameter ratio of the TiB2 grains increased obviously. As a result, relative density, Vickers hardness, flexural strength and fracture toughness of Ti-B4C-C-Al preforms as-cended to be 97.7%, 20.6GPa, 425MPa and 7.3MPa·m1/2, respectively. The additive Al effectively restrained the oxidation of Ti in the spray forming process, which improved the mechanical properties of the preforms greatly.

参考文献

[1] Liu Hongwei, Zhang Long, Wang Jianjiang, et al. Feasibility analysis of self-reactive spray forming TiC-TiB2-based composite ceramic preforms. Key Engineering Materials, 2008, 368-372: 1126-1129.

[2] 刘宏伟, 张 龙, 王建江, 等. 自反应喷射成形制备TiC-TiB2复合陶瓷坯件. 材料研究学报, 2008, 22(2): 274-278.

[3] Wang Jianjiang, Hu Wenbin, Liu Hongwei, et al. Flying combustion experiments and numerical simulation for Ti-B4C-C agglomerated particles during the self-reactive spray forming process. Key Engineering Materials, 2008, 368-372: 1686-1688.

[4] 王建江, 刘宏伟, 胡文斌,等(WANG Jian-Jiang, et al). 自反应喷射成型复相结构陶瓷的组织与性能. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2009, 38(S2): 325-328.

[5] 唐建新, 左开芬, 胡晓清, 等. 过渡塑性相工艺制造Ti-B-C复合陶瓷材料. 清华大学学报(自然科学版), 1998, 38(12): 73-75.

[6] Zha M, Wang H Y, Li S T, et al. Influence of Al addition on the products of self-propagating high-temperature synthesis of Al-Ti-Si system. Materials Chemistry and Physics, 2009, 114: 709-715.

[7] 孙晓冬, 梅炳初, 袁润章(SUN Xiao-Dong, et al). Al含量对TiC自蔓延高温合成过程的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 1997, 25(5): 578-582.

[8] 王建江, 杜心康, 刘宏伟, 等(WANG Jian-Jiang, et al). Al对反应火焰喷涂TiC-TiB2复相陶瓷涂层制备的影响. 无机材料学报(Journal of Inorganic Materials), 2007, 22(5): 550-554.

[9] Zhu C C, Zhang X H, He X D, et al. Self-propagating High- temperature synthesis, microstructure and mechanical properites of TiC-TiB2-Cu composite. Journal of Materials Science and Technology, 2005, 22(1): 78-82.

[10] Mitterer C, Mayrhofer P H, Beschliesser M, et al. Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings. Surface and Coatings Technology, 1999, 120: 405-411.

[11] Becher P F. Microstructure design of toughened ceramics. Journal of American Ceramic Society, 1991, 10: 1637-1642.

[12] 刘宏伟, 张 龙, 王建江, 等. 自反应喷射成形Ti(C,N)-TiB2复合陶瓷坯件的反应转化机理. 热加工工艺, 2008, 37(2): 26-29.

[13] 唐思文, 张厚安, 刘心宇(TANG Si-Wen, et al). La2O3对Mo5Si3/MoSi2复合材料的改性研究. 中国稀土学报(J. Rare Earth), 2007, 25(2): 195-200.

[14] 龚江宏. 陶瓷材料断裂力学. 北京: 清华大学出版社, 2001.

[15] 朱春城, 张幸红, 赫晓东(ZHU Chun-Cheng, et al). TiC-TiB2/Cu复合材料的自蔓延高温合成研究. 无机材料学报(Journal of Inorganic Materials), 2003, 18(4): 872-878.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%