欢迎登录材料期刊网

材料期刊网

高级检索

稀土锆酸盐材料具有比Y2O3部分稳定ZrO2陶瓷低的热导率, 是新型热障涂层的潜在候选材料之一. 利用大气等离子体喷涂技术以喷雾造粒的Sm2Zr2O7粉体制备涂层, 并在相同条件下沉积8wt%Y2O3稳定ZrO2涂层. 对比评价了两种涂层的结构、热物理性能和力学性能. X射线衍射结果表明, 制备态Sm2Zr2O7涂层为缺陷萤石结构. 扫描电镜分析显示, Sm2Zr2O7和8wt%Y2O3稳定ZrO2涂层为典型的层状结构, 内部有很多气孔、裂纹等缺陷. 800℃测得的 Sm2Zr2O7涂层的热导率为0.44 W/(mK), 比相同条件下测得的8wt%Y2O3稳定ZrO2涂层的热导率低~40%, 两者的热膨胀系数相似. 力学测试结果显示, Sm2Zr2O7涂层的抗折强度、硬度和弹性模量均低于8wt%Y2O3稳定ZrO2涂层.

Rare-earth zirconates with a pyrochlore structure have attracted great attention for potential application in thermal barrier coating systems. In the present work, Sm2Zr2O7 coatings were deposited by atmospheric plasma spraying technology. Their microstructure, thermo-physical and mechanical properties were examined, and compared with that of 8wt% Y2O3 stabilized ZrO2 coatings which was deposited under the same plasma spraying conditions. X-ray diffraction result shows that the as-sprayed Sm2Zr2O7 coating exhibits a defective fluorite structure. The thermal conductivity of Sm2Zr2O7 coating measured at 800℃ is 0.44W/(mK), about 40% lower than that of 8wt% Y2O3 stabilized ZrO2 coating, but the expansion coefficients of both coatings are similar. The Sm2Zr2O7 coating exhibits lower bending strength, microhardness and elastic modulus compared with 8wt% Y2O3 stabilized ZrO2 coating.

参考文献

[1] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine apptications. Science, 2002, 296(5566): 280-284.

[2] Zhu D M, Miller R A. Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf. Coat. Tech., 1998, 109(1/2/3): 114-120.

[3] Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res., 2003, 33: 383-417.

[4] Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum. J. Nucl. Mater., 1997, 249(2/3): 259-261.

[5] Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected rare earth aluminates. J. Therm. Anal. Calorim., 1998, 54(3): 873-879.

[6] Wu J, Wei X Z, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J. Am. Ceram. Soc., 2002, 85(12): 3031-3035.

[7] Cao X Q. Application of rare earths in thermal barrier coating materials. J. Mater. Sci. Techn., 2007, 23(1): 15-35.

[8] 潘 伟, 徐 强, 王敬栋, 等. 稀土锆酸盐高温热障涂层材料及其制备方法, 中国, C09D 5/18, CN 1657573A, 2005.08.24.

[9] Zhao H B, Levi C G, Wadley H N G. Vapor deposited samarium zirconate thermal barrier coatings. Surf. Coat. Tech., 2009, 203(20/21): 3157-3167.

[10] Yu J H, Zhao H Y, Tao S Y, et al. Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings. J. Eur. Ceram. Soc., 2010, 30(3): 799-804.

[11] 梁英教, 车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993.

[12] Wang C, Zinkevich M, Aldinger F. Experimental investigation and thermodynamic modeling of the ZrO2-SmO1.5 system. J. Am. Ceram. Soc., 2007, 90(7): 2210-2219.

[13] Rushton M J D, Stanek C R, Cleave A R, et al. Simulation of defects and defect processes in fluorite and fluorite related oxides: implications for radiation tolerance. Nucl. Instrum. Meth. B, 2007, 255(1): 151-157.

[14] Mcpherson R. The Relationship between the mechanism of formation, microstructure and properties of plasma-sprayed coatings. Thin Solid Films, 1981, 83(3): 297-310.

[15] Chraska T, King A H. Growth of columnar grains during zirconia-yttria splat solidification. J. Mater. Sci. Lett., 1999, 18(18): 1517-1519.

[16] Mcpherson R. On the Formation of thermally sprayed alumina coatings. J. Mater. Sci., 1980, 15(12): 3141-3149.

[17] Mcpherson R. A review of microstructure and properties of plasma sprayed ceramic coatings. Surf. Coat. Tech., 1989, 39(1/2/3): 173-181.

[18] Ilavsky J, Long G G, Allen A J, et al. Evolution of the void structure in plasma-sprayed YSZ deposits during heating. Mater. Sci. Eng. A, 1999, 272(1): 215-221.

[19] Xu Q, Pan W, Wang J D, et al. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings. Mater. Lett., 2005, 59(22): 2804-2807.

[20] 奚同庚. 无机材料热物性学. 上海: 上海科学出版社, 1981: 18-40.

[21] Walpole R E, Myers R H. Probability and statistics for engineers and scientists, 2nd ed., New York (Macmillan), 1978.

[22] 曲远方. 功能陶瓷的物理性能. 北京: 化学工业出版社, 2006: 198-200.

[23] 陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 2003: 320-324.

[24] Lee D Y, Kim D J, Cho D H. Low-temperature phase stability and mechanical properties of Y2O3- and Nb2O5-co-doped tetragonal zirconia polycrystal ceramics. J. Mater. Sci. Lett., 1998, 17(3): 185-187.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%