欢迎登录材料期刊网

材料期刊网

高级检索

采用介孔二氧化硅MCM-41作模板和硅源,合成了具有介孔结构的可充镁电池正极材料硅酸锰镁.分别用XRD、SEM、TEM和氮气吸脱附测试研究了合成材料的介孔结构,并通过循环伏安、恒电流充放电测试比较了介孔与无孔硅酸锰镁材料的电化学性能.由于介孔材料活性表面较大,可增加电解液与活性材料的接触,使材料具有较多的电化学反应位.因而,与相应的无孔材料相比,具有介孔结构的硅酸锰镁材料呈现出较低的充放电极化、较大的放电容量和较高的放电电压平台.在0.25 mol/L Mg(AlCl2EtBu)2/THF电解液中,0.2 C(约62.8mA/g)充放电速率下,介孔硅酸锰镁材料首次放电容量可达到241.8mAh/g,放电平台为1.65V(vsMg/Mg2+).设计具有介孔结构的材料为提高可充镁电池正极的电化学性能提供了一条有效的途径.

参考文献

[1] 袁华堂,吴峰,武绪丽,等.可充镁电池的研究和发展趋势.电池,2002,32(6):14-17.
[2] 冯真真,努丽燕娜,王久林,等.镁二次电池研究进展.化学与物理电源系统,2007,1:73-79.
[3] Amrbach D,Lu Z,Schechter A,et al.Prototype systems for rechargeable magnesium batteries.Nature,2000,407(12):724-727.
[4] Aurbach D,Moshkovich M,Schechter A,et al.Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FHR spectroscopy.Electrochem.Solid-State Lett.,2000,3(1):31-34.
[5] Novák P,lmhof R,Haas O.Magnesium insertion electrodes for rechargeable nonaqueous batteries-a competitive alternative to lithium.Electrochim.Acta,1999,45(1/2):351-367.
[6] Levi M D,Lancry E,Gizbar H,et al.Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 chevrel phase.J.Electrochem.Soc.,2004,151(7):A1044-A1051.
[7] Feng Z Z,Yang J,NuLi Y N,et al.Sol-Gel synthesis of Mg1 03Mn0.97SiO4 and its electrochemical intercalation behavior.J.Power Sources,2008,184(2):604-609.
[8] Feng Z Z,Yang J,NuLi Y N,et al.Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.975iO4.Electrochem.Commun,2008,10(9):1291-1294.
[9] NuLi Y N,Yang J,Wang J L,et al.Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode.J.Phys.Chem.C,2009,113(28):12594-12597.
[10] Bruce P G,Scrosati B,Tarascon J M.Nanomaterials for rechargeable lithium batteries.Angew.Chem.Int.Ed.,2008,47(16):2930-2946.
[11] Cheng F Y,Tao Z L,Liang J,et al.Template-directed materials for rechargeable lithium-ion batteries.Chem.Mater.,2008,20(3):667-681.
[12] Valdés-Solís T,Fuertes A B.High-surface area inorganic compounds prepared by nanocasting techniques.Mater.Res.Bull.,2006,41(12):2187-2197.
[13] Luo J Y,Zhang J J,Xia Y Y.Highly electrochemical reaction of lithium in the ordered mesoporous β-MnO2.Chem.Mater.,2006,18(23):5618-5623.
[14] Luo J Y,Wang Y G,Xiong H M,et al.Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a ca.ode material for lithiumion batteries.Chem.Mater.,2007,19(19):4791-4795.
[15] Jiao F,Shaju K M,Bruce P G.Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction.Angew.Chem.Int.Ed.,2005,44(40):6550-6553.
[16] NuLi YN,Yang J,Li Y,et al.Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries.Chem.Commun.,2010,46(21):3794-3796.
[17] 李亚男.掺杂过渡金属的MCM-41介孔分子筛的制备/表征及其对C02乙烷氧化脱氢制乙烯的研究.长春:吉林大学博士论文,2006.
[18] Aurbach D,Schechter A,Moshkovich M,et al.On the mechanisms of reversible magnesium deposition processes.J.Electrochem.Soc.,2001,148(9):A1004-A1014.
[19] Shi Z C,Wang Q,Ye W L,etal.Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials.Microporous Mesoporous Material,2006,88(1/2/3):232-237.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%