欢迎登录材料期刊网

材料期刊网

高级检索

采用CTMAB/正丁醇/正庚烷/水四元反相胶束介质体系中直接沉淀法制备纳米CdS.采用不同ω([H2O]/[表面活性剂])条件制备的CdS光催化活性有所不同,当ω值为25时,所制备的纳米CdS光催化活性最高.利用X射线衍射仪(XRD)、透射电镜(TEM)对CdS的晶型、尺寸进行表征,结果显示,反相胶柬法制备的CdS为立方闪锌矿型,ω值为25条件下制备的CdS平均粒径为9nm,且分散均匀.采用循环伏安法(CV)和电化学交流阻抗法(EIS)研究了纳米CdS的电化学行为,表明反相胶束法水量条件直接影响所制备的CdS粒径大小及电化学性质.在可见光照射下(λ≥420nm),光催化降解孔雀绿(Malachite Green,MG)为探针反应,探讨了不同反相胶束体系的制备条件对CdS光催化活性的影响,通过紫外-可见光谱(UV-Vis)和总有机碳仪(TOC)对光催化降解MG跟踪测定,表明可见光照射下以水量25制备的CdS中性条件卜在70min内可以使MG褪色完全,反应30h后MG的矿化率达50%以上.同时跟踪测定了降解过程中H2O2和羟基自由基(·OH)的变化,表明CdS光催化机理涉及到·OH历程.

Cadmium sulfide(CdS)nanoparticles with efficient photocatalytic activity were synthesized using wa-ter/CTMAB/n-butyl alcohol/n-heptanes reverse micelle system.The particles exhibited various photocatalyfic activi-ties with the different ω values(ω=[Water]/[CTMAB]=25,35,50),and the optimal ω value was 25.Based on the X-ray diffraction(XRD)and transmission electron microscope(TEM)analysis,CdS nanoparticles were ascribed to the cubic sphalerite and the average size of CdS particle(ω=25)was about merely 9nm.Moreover,the ω values could di-rectly affect the particle size and electrical property of CdS nanoparticles by means of cyclic voltammetry(CV)and electrochernical impedance spectroscopy(EIS).Under visible light(λ≥420nm)irradiation,Malachite Green(MG)was used as a probe to investigate the effect of preparation conditions on photocatalytic activity of CdS nanoparticles.It can be concluded that MG could fade out within 70min and attain the 50% mineralization after 30h under visible light irradiation,and the degradation process mainly referred to the hydroxyl radical(-OH)and H2O2.

参考文献

[1] Jang J S,Ji S M,Bae S W,et al.Optimization of CdS/TiO2nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light(λ≥420 nm).Journal of Photochemistry and Photobiology A:Chemistry,2007,188(1):112-119.
[2] Curri M L,Agostiano A,Manna L,et al.Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion:the role of the cosurfactant.J.Phys.Chem.B,2000,104(1):8391-8397.
[3] Huang Y P,Cai R X,Huang H P.Studies on the fluorescence enhancement of Reverse Micelle on 2,3-Diaminophenazine.Chemical Research in Chinese University,1999,20(7):1031-1036.
[4] Zhang J Z.Interracial charge carrier dynamics of colloidal semiconductor nanoparticles.J.Phys.Chem.B,2000,104(1):7239-7253.
[5] Zhao X Y,Ao Q,Chen F S,et al.Effect of reverse micelle on conformation of soy globulins:a Raman study.Food Chemistry,2009,116(1):176-182.
[6] Ryoko M U,Takashi H,Takafumi K,et al.Photochemically triggered transfer of bovine serum albumin by reverse micelle containing a Malachite Green leuconitrile derivative.Colloids and Surfaces A:Physicochem.Eng.Aspects,2009,337(1):180-184.
[7] Mehran G,Hamidreza A,Alireza A.Size-controlled synthesis of ZrO2-TiO2 nanoparticles prepared via reverse micelle method investigation of particle size effect on the catalytic performance in vapor phase Beckmann rearrangement.Materials Research Bulletin,2008,43(5):1255-1262.
[8] Pandey A,pandey A.Reverse micelles as suitable microreactor for increased biohydrogen production.International Journal of Hydrogen Energy,2008,33(1):273-278.
[9] Zingaretti L,Mariano Correa N,Boscatto L.Distribution of amines in water/AOT/n-hexane reverse micelles:influence of the amine chemical structure.Journal of Colloid and Interface Science.2005,286(1):245-252.
[10] Hirai T,Nanba M,Komasawa L Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity.Journal of Colloid and Interface Science,2002,252(1):89-92.
[11] Li H D,Xu Z L,Zhai H J,et al.Preparation of CdS nanoparticles by reverse micelle method.Journal of Functional Materials,2008,6(39):1040-1042.
[12] Bader H,Sturzenegger V,Hoigne J.Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine(DPD).Water Res.,1988,22(9):1109-1115.
[13] Sathisha M,Viswanath R P.Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle:Effect of particle size,noble metal and support.Catalysis Today,2007,129(15):421-427.
[14] Kanade K G,Baeg J O K,Mulik U P,et al.Nano-CdS by polymerinorganic solid-state reaction:Visible light pristine photocatalyst for hydrogen generation.Materials Research Bulletin,2006,41(12):2219-2225.
[15] Shen S H,Guo L J.Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst.Materials Research Bulletin,2008,43(2):437-446.
[16] Girginer B,Galli G,Bicaka N.Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water.International Journal of Hydrogen Energy,2009,34(3):1176-1184.
[17] Zou X Z,Zhang H L,Wang F,et al.Immobilization of hemoglobin on magnetic microspheres for preparation of hydrogen peroxide biosensor.Journal of Analytical Science,2007,6(23):660-664.
[18] Qin Y H,Guan X H,Zhang S Y,et al.Electrochemical properties of myoglobin-nano-alumina templates-colloid gold assembly system.Chinese Journal of Analytical Chemistry,2006,34(01):80-82.
[19] Zhang Y W,Zhang Y,Wang H,Bani Yan,et al.An enzyme immobilization platform for biosensor designs of direct electrocbemistry using flower-like ZnO crystals and nano-sized gold particles.Journal of Electroanalytical Chemistry,2009,627(1):9-14.
[20] Jiang X,Zhang L,Dong S J.Assemble of poly(aniline-co-o-amino benzenesulfonic acid)three-dimensional tubal net-works onto ITO electrode and its application for the direct electrochemistry and electro-catalytic behavior of cytochrome c.Electrochemistry Communcations,2006,8(7):1137-1141.
[21] Smirnov W,Kriele A,Yang N,et al.Aligned diamond nenowires:Fabrication and characterisation for advanced applications in bioand electrochemistry.Diamond & Related Materials,2009,19(2):186-189.
[22] Xu J M,Li W,Yin Q F,et al.Direct electrochemistry of Cytochrome c on natural nano-attspulgite clay modified electrode and its electrocatalytic reduction for H2O2.Electrochimica Acta,2007,52(11):3601-3606.
[23] Elena A.E,Natalia L.Z,Yuri F Z.Effect of surface potential of reverse micelle on enzyme-substrate complex formation.Colloids and Surfaces A:Physicochem.Eng.Aspects,2008,317(1):297-302.
[24] Hieda J,Saito N,Takai O.Size-regulated gold nanoparticles fabricated by a discharge in reverse micelle solutions.Surface & Coatings Technology,2008,202(22):5343-5346.
[25] Su Y R,William B,Lee T K,et al.Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas.J.Phys.Chem.C,2007,111(1):18195-18203.
[26] Jiang D,Xu Y,Wu D,et al.Visible-light responsive dye-modified TiO2 photocatalyst.Journal of Solid State Chemistry,2008,181(3):593-602.
[27] Uchihara T,Fukuda N,Miyagi E.Subpicosecond spectroscopic studies on the photochemical events of2-dimethylaminoethanethiol-capped CdS nanoparticles in water.Journal of Photochemistry and Photobialogy A:Chemistry,2005,169(3):309-315.
[28] Zhu H Y,Jian R,Xiao L,et al.Studies on decoloration of methyl orange by active carbon supported chitosan/nano-CdS composite particle.Journal of Hazardous Materials,2009,169(933):1179-1184.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%