采用分段乳液聚合法和无皂乳液聚合法制备了聚苯乙烯(PS)微球,以此单分散胶态晶体和嵌段共聚物P123为模板剂,通过Y型分子筛前驱体的填充和模板剂的去除制备了具有大-介-微多级孔的材料.采用XRD、SEM和TEM等手段表征了PS微球及多级孔材料.结果表明,分段乳液聚合可以制备平均粒径为50nm的PS微球,无皂乳液聚合可以制备450nm左右的PS微球;以其作为大孔模板剂分别考察了PS微球粒径、模板剂用量、水用量等因素对多级孔材料合成的影响,结果表明,PS微球的粒径越大,材料中大孔的分散性越好.合成多级孔材料的条件为:PS微球乳液与前驱体的比值(质量比)为1.0~0.5,水与前驱体的比值为7.5,P123与前驱体的比值为0.1.
Polystyrene (PS) microspheres with average diameter of 50nm and 450nm were prepared by step emulsion polymerization and emulsirier-free emulsion polymerization, respectively. On the basis of this, alu-minosilicates with macro-meso-micropores were synthesized via in-situ assembly of Y zeolite precursors by PS microspheres/P123 dual templates. The materials with macro-meso-micropores were characterized by means of XRD, SEM and TEM. The results showed that PS microspheres with the diameter of 50nm and 450nm can be obtained by step emulsion polymerization and emulsifier-free emulsion polymerization, respestively. More-over, influence of various factors including diameters of PS microspheres, amount of templates, and amount of water on the synthesis of the macro-meso-microporous materials were systematically investigated. It was concluded that the composites synthesized by PS microspheres with the larger diameter contained more dispersed macropores. The optimum conditions for aluminosilicates preparation were found to be PS/precur-sors ratio of 1-0.5 , water/precursors ratio of 7.5 , and P123/precursors ratio of 0.1.
参考文献
[1] | 李学平,陈爱忠.FCC催化剂现状及其发展方向.工业催化,2003,11(8):21-23. |
[2] | Tan Q,Bao X,Song T,et al.Synthesis,characterization,and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of zeolite Y nanoclusteH on kaolin.Journal of Catalysis,2007,251(1):69-79. |
[3] | Tan Q,Fan Y,Liu H,et al.Bimodal micro-meso-porous aluminosilicates for heavy oil cracking:Pore structure tuning and catalytic properties.AIChE Journal.2008,54 (7):1850-1859. |
[4] | Ikari K,Suzuki K.Imai H.Grain size control of mesoporous silica and formation of bimodal pore structure.Langmuir.2004,20(26):11504-11508. |
[5] | Sel O,Kuang D,Thommes M.et al.Principles of hierarchical meso-and macropore architectures by liquid crystalline and polymer colloid templating.Langmuir.2006,22 (5):2311 -2322. |
[6] | Zhang F Q,Yan Y.Meng Y,et al.Ordered bimodal mesoporous silica with tunable pore structure and morphology.Microporous and Mesoporous Materials,2007,98(1/2/3):6-15. |
[7] | Wan Y,Zhao D.On the controllable soft-templating approach to mesoporous ailicates.Chemical Reviews,2007,107(7):2821-2860. |
[8] | Zhang Z,Han Y,Xiao F,et al.Mesoporous aluminosilicates with ordered hexagonal structure,strong acidity,and extraordinary hydrothermal stability at high temperatures.Joumal of the American Chemical Society,2001,123 (21):5015-5021. |
[9] | Han Y,Li D,Zhao L,et al.High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures.Angew.Chem.Int.Ed Engl.,2003,42(31):3633-3637. |
[10] | 宋春霞,杨立新,陈小明,等(SONG Chun-Xia,et al).胶晶模板法制备3DOM尖晶石型LiMn_2O_4及表征.高等学校化学学报(Chemical Journal of Chinese Universities),2007,28 (2):204-207. |
[11] | Tang F,Uchikoshi T,Sakka Y.A practical technique for the fabrication of highly ordered macroporous structures of inorganic oxides.Materials Research Bulletiri,2006,41 (2):268-273. |
[12] | Lee S G,Jang Y S,Park S S.Synthesis of fme sodium-free silica powdvr-from sodium silicate using w/o emulsion.Materials Chemistry and Physics,2006,100 (2/3):503-506. |
[13] | 张凯,傅强,黄渝鸿.聚苯乙烯单分散微球粒径可控性探讨.离子交换与吸附,2006,22(2):140-145. |
[14] | 崔匀,刘洪涛,金君素,等.炭黑/P123双重模板体系原位组装梯度孔材料.化工学报,2008,59(10):2668-2675. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%