在金属有机盐沉积(MOD)法制备YBCO薄膜的工艺中, 采用无F的α甲基丙烯酸铜取代原来的三氟乙酸铜, 可以降低前驱溶液中大约50%的氟含量. 研究表明, 该方法大大缩短了YBCO前驱薄膜受热分解的时间, 仅为原来的1/7. 通过XRD、SEM分析发现, 该方法可以制备成分单一、具有良好立方织构的YBCO薄膜, 且薄膜表面平整致密, 没有裂纹, 临界温度(Tc)达到了90K左右, 77K、自场下的临街电流密度(Jc)达到了2.84MA/cm2. 通过在制备的YBCO薄膜中引入6mol% 的 Zr元素掺杂, 有效地提高了YBCO薄膜在外加磁场下的超导性能.
Through replacing copper Tri-fluoroacetate by copper α-methacrylic in Metal Organic Deposition (MOD) process, the total amount of fluorine in YBCO precursor solution was reduced by about 50%. As a result, the calcination period for YBCO precurse film was dramatically reduced. The calcination time was reduced to 2h, only one seventh of that in all-Fluorine MOD process. X-ray diffraction and scanning electronic microscope (SEM) measurements show that YBCO films have strong YBCO(00l) peaks and crack-free surface. The critical temperture (Tc) and critical current density (Jc at self-field, 77K) are 90K and 2.84MA/cm2, respectively. Furthermore, the property of YBCO film prepared by the fluorine-reduced MOD method is enhanced greatly by incorporating 6mol% Zr element into the film.
参考文献
[1] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%