采用放电等离子烧结技术, 以氢直流电弧法制备的La-LaH2纳米粉末为原料, 制备了高纯LaB6多晶纳米块体热阴极材料. 系统研究了LaH2的脱氢反应、SPS合成LaB6的烧结反应式, 并用XRD、SEM、TEM和AFM对LaB6烧结块体的相与结构进行了表征. 实验结果表明, LaH2在796.4℃时发生脱氢反应; SPS制备得到了单相LaB6纳米多晶块体, 纯度达到99.867%, 相对密度达到99.2%, 和其他烧结方法相比, 样品显微硬度及抗弯强度等性能显著提高. 晶体为大小均匀, 形态规则完整的等轴晶, 50MPa, 烧结温度1250~1350℃范围内平均晶粒尺寸为120nm, 随烧结温度的升高, 晶粒尺寸逐渐增大.
La-LaH2 nanopowders were prepared by hydrogen arc plasma method, and then the mixed nanopowders of La-LaH2 and B were in situ sintered by Sparkle Plasma Sintering (SPS) method in oxygen free system. High-purity LaB6 polycrystal nanostructured bulk was successfully synthesized by SPS. The dehydrogenation of LaH2 nanopowders and the reaction equation of sintering LaB6 were studied. The phase and microstructure of LaB6 bulks were characterized by using XRD, SEM, TEM and AFM techniques. The results show that the dehydrogenation temperature of LaH2 nanopowders is 796.4℃. The sintered body is single-phase LaB6, which has a high purity of 99.867%, and its relative densities is up to 99.2%. The hardness and bend strength of the sintered LaB6 are much better than those of LaB6 prepared by other sintering methods. The crystals of LaB6 bulk are equiaxed crystals, the average grain size of the bulks sintered at 50MPa and 1250-1350℃ is about 120nm. The grains are homogeneous and integrated, and the grain size increases with the raising of sintering temperature.
参考文献
[1] | Nishitani T, Aono M, Tanaka T, et al. Surf. Sci., 1980, 95 (2-3): 341-342. [2] Futamoto M, Nakazawa M, Kawabe U. Surf. Sci., 1980, 100 (3): 470-471. [3] Lafferty J M. J. Appl. Phys., 1951, 22: 299-302. [4] Waldhauser W, Mitterer C, Laimer J, et al. Surface and Coatings Technology, 1995, 74-75 (2): 890-896. [5] Mushiaki M, Akaishi K, Mori T. Mater. Sci. Eng. A, 1993, 163 (2): 177-179. [6] Nakamoto M, Fukuda K. Appl. Surf. Sci., 2002, 202 (3-4): 289-294. [7] Dattatray J Late, Mahendra Morea, Pankaj Misra, et al. Ultramicroscopy, 2007, 107 (9): 825-832. [8] 郑树起, 闵光辉, 于化顺. 材料导报, 2000, 24 (3): 50-51. [9] Paderno Y B, Paderno V N. Alloy Comp., 1995, 219: 116-117. [10] Paderno Y B, P adernoV N, Filippov V B. Soviet Powder Metallurgy Metal Ceramics, 1992, 8 (356): 700-701. [11] Paderno V N, PadernoY B. Alloys Comp., 1995, 219: 228-229. [12] Chen C M, Zhang L T, Zhou W C, et al. Journal of Crystal Growth, 1998, 191 (4): 873-878. [13] Otani S, Aizawa T, Yajima Y, et al. Journal of Crystal Growth, 2002, 234 (2-3): 431-434. [14] 张粹伟. 光电子技术, 1989, (03): 35-43. [15] 张久兴, 刘科高, 周美玲. 粉末冶金技术, 2002, 20 (3): 129-133. [16] 高瑞兰, 于化顺, 韩建德. 山东大学学报, 2002, 32 (6): 593-596. [17] Wen Chung-han, Wu Tsung-ming, Wen Cheng, et al. Journal of the European Ceramic Society, 2004, 24 (10-11): 3235-3243. [18]于普涟. 山东大学硕士学位论文, 2001. [19] Zhang Xing-hong, Han Hu-ping, Jie-cai, et al. Scripta Materialia, 2007, 57 (11): 1036-1039. [20] Gao Rui-lan, min Guang-hui, Yu Hua-shun, et al. Ceramics International, 2005, 31 (1): 15-19. [21] Faruque M Hossain, Daniel P Riley, Graeme E Murch, et al. Physical Review B, 2005, (72): 235101-1-235101-5. [22] Duquea J G S, Urbano R R, Venegas P A, et al. Physica B, 2007, 398 (1): 424-426. [23] 刘文西, 黄孝瑛, 陈玉如. 材料结构电子显微分析. 天津: 天津大学出版社, 1989. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%