采用高温超高压(HT-HP)技术在4.5GPa/1250℃/20min工艺条件下制备了添加2wt% Al2O3助烧结剂的纳米SiC 陶瓷. 采用X射线粉末衍射(XRD)、X光电子能谱(XPS)、扫描电镜(SEM)、X射线能谱(EDX)、纳米压痕(Nano indenter)研究了烧结SiC陶瓷的物相 组成、晶粒大小、化学成分、微观结构、纳米压痕力学性能等. 结果表明: 采用超高压烧结, 可以在较低温度(1250±50℃)、较少烧结助剂用量下实现纳米SiC的致密烧结. 烧结体未发生相转变, 结构致密, 无孔隙, 晶粒尺寸为22nm, 晶格常数为0.4355nm;显微硬度为33.7GPa, 弹性模量为407GPa.
High-density SiC ceramics doped with 2wt% Al2O3 additives were fabricated by ultra-high
pressure and high temperature technique (4.5GPa,1250℃,20min). The structures, grain size, lattice parameters, chemical component, morphology and mechanical property of the sintered SiC ceramics were characterized by X-ray diffraction
(XRD), X-ray photoelectron energy spectroscope (XPS), scanning electron microscope (SEM), energy dispersive X-ray
spectroscope (EDX) and nano impress indenter. The results show that nano-SiC ceramic is fully densified by ultra-high
pressure technique at relative low temperature (1250±50℃). No phase transfer or holes is found in the sintered nano-SiC
ceramic. The hardness and elastic modulus of the sintered SiC ceramic with grain size of 22nm and lattice parameters of 0.4355nm are 33.7GPa and 407GPa, respectively.
参考文献
[1] | |
[2] | 佘继红. 上海: 中国科学院上海硅酸盐研究所博士论文, 1999. [2] Gary L. Harris. Properties of silicon carbide. London, UK: the Institution of Electrical Engineers. 1995. [3] 佘继红, 江东亮, 谭寿洪, 等. 硅酸盐学报, 1997, 25 (4): 395--400. [4] Vassen R, Kaiser A, Stover D. J. Am. Ceram. Soc., 1999, 82 (10): 2585--2593. [5] 凌云汉, 李江涛, 葛昌纯. 北京科学技术大学学报, 2001, 23 (3): 257--261. [6] 高濂, 李蔚, 王宏志, 等(GAO Lian, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (6): 1005--1008. [7] 李丹, 卢忠远, 藤元成, 等. 山东陶瓷, 2003, 26 (5): 9--12 [8] Balog M, Sajgalik P, Hnatko M, et al. Journal of the European Ceramic Society, 2007, 27 (5): 2145--2152. [9] Vassen R, Stover D. Materials Science and Enginnering A, 2001, 301 (1): 59--68. [10] Jin H Y, Ishiyama M, Qiao G J, et al. Materials Science & |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%