欢迎登录材料期刊网

材料期刊网

高级检索

采用真空热蒸发法制备了CsI(Tl)薄膜, 然后进行了不同温度的真空热处理.用X射线衍射仪、扫描电子显微镜、X射线荧光光谱仪及正电子寿命谱仪对CsI(Tl)薄膜样品进行了分析, 并测得了样品的光产额.结果表明, 该CsI(Tl)薄膜沿(200)晶面择优取向生长.经过较低温度退火, CsI薄膜中的Tl+离子向薄膜表面扩散, 薄膜中缺陷数量增加, 且尺寸较大, 光产额略微增高.经过250℃退火, 薄膜中低温退火所形成缺陷得到恢复, 薄膜缺陷尺寸变小, 且数目减少, 具有较好的结晶状态, 光产额提高.经过400℃退火, 薄膜结构发生显著变化, 薄膜中缺陷大幅增加, 结晶状态变差, Ti+含量减少, 光产额急剧下降.

CsI(Tl) films were prepared by thermal evaporation and annealed at various temperatures. Structure and scintillation properties of the films were examined using X-ray diffraction, scanning electron microscope, X-ray fluorescence spectrometry, positron annihilation lifetime spectroscope and scintillation pulse height spectrometry. Results show that the CsI films are in micro-columnar structure with a preferential (200) orientation. When the sample is annealed at 150℃, Tl+ ions diffuse to the sample surface. Consequently, the amount and size of the vacancy type of defects increase. However, the light yield increases a little after annealed. The samples annealed at 250℃ have a good crystalline state and scintillation properties. As the annealing temperature increases to 400℃, the light output of the samples decreases seriously due to the dramatic change of their microstructure and the decrease of Ti+.

参考文献

[1] Nagarkar V V, Gordon J S, Vasile S, et al. IEEE Trans. Nucl. Sci., 1996, 43 (3): 1559-1563.
[2] Nagarkar V V, Gupta T K, Miller S R, et al. IEEE Trans. Nucl. Sci., 1998, 45 (3): 492-496.
[3] Fioretto E, Innocenti F, Viesti G, et al. IEEE Trans. Nucl. Sci., 2000, 47 (4): 1315-1318.
[4] Garibaldia F, Cisbania E, Cusanno F, et al. Nucl. Instrum. Methods A, 2004, 525 (1-2): 263-267.
[5] 孙长春, 李家才, 姚淑德, 等.核电子学与探测技术, 2004, 24 (4): 376-378.
[6] Duan M, Frojdh C, Thungstrom G, et al. IEEE Trans. Nucl. Sci., 1998, 45 (3): 525-527.
[7] Ananenko A, Fedorov A, Mateychenko P, et al. Appl. Surf. Sci., 2004, 236 (1-4): 186-191.
[8] Fedorov A, Lebedinsky A, Zelenskya O. Nucl. Instrum. Methods A, 2006, 564 (1): 328-331.
[9] Jing T, Goodman C A, Drewery J, et al. IEEE Trans. Nucl. Sci., 1994, 41 (4): 903-909.
[10] Fujieda I, Cho G, Drewery J, et al. IEEE Trans. Nucl. Sci., 1991, 38 (2): 255-262.
[11] 张天保, 唐孝威, 张勤建.高能物理与核物理, 1983, 7 (6): 674-680.
[12] 徐向晏, 牛憨笨.计算物理, 2002, 19 (3): 195-202.
[13] Schotanus P, Kamermans R, Dorenbos P. IEEE Trans. Nucl. Sci., 1990, 37 (2): 177-182.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%