欢迎登录材料期刊网

材料期刊网

高级检索

用廉价三价铁离子化合物为铁源, 聚丙烯作还原剂和碳源, 两步固相法合成F掺杂原位碳包覆LiFePO4正极材料. 结果表明, 合成产物具有完整的橄榄石型LiFePO4晶体结构, 粉末形状近似球形, 尺寸分布在50~200nm范围内, 两步固相法更好地抑制了LiFePO4晶粒的长大. 电化学测试结果表明, F掺杂提高了材料倍率放电性能, 有效降低了材料电极的极化. 在1C, 2C, 3C(C为150mA/g)充放电倍率下, LiFePO3.98F0.02/C的比容量分别为146mAh/g, 137mAh/g, 122mAh/g, 1C循环55次后放电容量达到初始容量的99.3%.

F-doped lithium iron phosphates were synthesized and in~situ carbon coated by two-step solid-state reaction using Fe(Ⅲ) compound as the iron source and polypropylene as the reductive agent and carbon source. The results show that the synthesized powders are near-spherical particles of 50--200nm with the olivine type LiFePO4 structure. Two-step solid-state reaction inhibits the growth of LiFePO4 particles more efficient compared with one-step solid-state reaction. The results of electrochemical measurement show that fluorin doping improves the rate capability of LiFePO4 and decreases the polarization of LiFePO4 electrode effectively. The discharge capacities of LiFePO3.98F0.02/C cathode material are 146mAh/g, 137mAh/g, 122mAh/g at charge and discharge rates of 1C, 2C, 3C, respectively. Cycling efficiency of 99.3% can be obtained after 55 cycles at 1C rate.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144 (4): 1188--1194.
[2] MacNeil D D, Lu Z H, Chen Z H, et al. J. Power Sources, 2002, 108 (1-2): 8--14.
[3] Takahashi M, Ohtsuka H, Akuto K, et al. J. Electrochem. Soc., 2005, A152 (5): 899--904.
[4] Chung S Y, Bloking J T, Chiang Y M. Nat. Mater, 2002, 1 (2): 123--128.
[5] Arnold G, Garche J, Hemmer R, et al. J. Power Sources, 2003, 119-121(1): 247-251.
[6] Singhai A, Skandan G, Amatucci G, et al. J. Power Sources, 2004, 129 (1): 38--44.
[7] Wang Y Q, Wang J L, Jun Y, et al. Adv. Funct. Mater, 2006, 16 (16): 2135--2140.
[8] Park K S, Son J T, Chung H T, et al. Solid State Commun, 2004, 129 (5): 311--314.
[9] 陈学军, 赵新兵, 曹高劭, 等. 中国有色金属学报, 2006, 16 (10): 1665--1671.
[10] Wang D Y, Li H, Shi S Q, et al. Electrochimica Acta, 2005, 50 (14): 2955--2958.
[11] Ni J F, Zhou H H, Chen J T, et al. Materials letters, 2005, 59 (18): 2361--2365.
[12] 廖小珍. 锂离子电池LiFePO4/C复合正极材料制备及其电化学性能研究. 上海交通大学博士论文, 2005.
[13] JEREMY B. Methods of making lithium metal compounds useful as cathode active materials. Europe, EP1343720. 2003,9,17. [14] SHIGETO O. Electrode active material for non-aqueous electrolyte secondary battery. Japan, JP2003229126. 2003,8,15.
[15] Kubo K, Fujiwara M, Yamada S, et al. J. Power Sources, 1997, 68 (2): 553--557.
[16] Amatucci G G, Pereire N, Zheng T, et al. J. Electrochem. Soc., 2001, 148 (2): A171--A182.
[17] 李建刚, 万春荣, 杨冬平, 等(LI Jian-Gang, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (6): 1298--1306.
[18] 米常焕, 曹高绍, 赵新兵. 无机化学学报, 2005, 21 (4): 556--570.

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%