采用电泳法在Si基底上沉积了碳纳米管(CNTs)薄膜, 并利用Ar微波等离子体对CNTs薄膜进行了改性处理, 研究了改性前后CNTs的微观结构和场发射性能. 高分辨透射电子显微镜(HRTEM)和拉曼光谱的表征结果表明, 等离子体改性明显改变了CNTs的微观结构, 形成了大量的管壁结构缺陷、纳米级突起和“针形”尖端; 场发射测试结果表明, CNTs经Ar等离子体改性处理后开启电场较改性前?略有增大, 等离子体改性10min的CNTs薄膜表现出最佳的场发射J-E特性, 阈值电场由改性前的3.12V/μm降低到2.54V/μm, 当电场强度为3.3V/μm时, 场发射电流密度由改性前的18.4mA/cm2增大到60.7mA/cm2. 对Ar微波等离子体改性增强CNTs薄膜场发射性能的机理进行了分析.
The carbon nanotubes (CNTs) film was prepared on Si substrate by electrophoretic deposition (EPD) and treated by Ar microwave plasma. The microstructure and field emission properties of the as-prepared CNTs films before and after treatment were investigated. High-resolution transmission electron microscope (HRTEM) and Raman spectroscope reveal the microstructural changes of CNTs after the plasma treatment as evidence of the appearance of a large amount of structural defects, the sticking with nanometer size and “needle-like” tips. The field emission measurements indicate that the turn on electric field is increased slightly after treatment. The sample treated by Ar plasma for 10min shows the best field emission J-E property. Compared to that of untreated sample, the threshold field of the CNTs film treated for 10min decreases from 3.12V/μm to 2.54V/μm. And after plasma treatment, the emission current density at applied electric field of 3.3V/μm increase from 18.4mA/cm2 to 60.7mA/cm2. The mechanism of variation of field emission properties after plasma treatment is discussed.
参考文献
[1] | Sarangi D, Arpaoui I, Bonard J M. Physica B, 2002, 323 (1-4): 165-167. [2] Jonge N D, Lamy Y, Schoots K, et al. Nature, 2002, 420 (28): 393-395. [3] de Heer W A, Chatelain A, Ugarte D. Science, 1995, 270 (5239): 1179-1180. [4] Xie S S, Li W Z, Pan Z W, et al. Journal of Physics and Chemistry of Solids, 2000, 61 (7): 1153-1158. [5] Choi J H, Choi S H, Han J H, et al. J. Appl. Phys., 2003, 94 (1): 487-490. [6] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297 (5582): 787-792. [7] Bonard J M, Kurt R, Klinke C. Chem. Phys. Lett., 2001, 343 (1-2): 21-27. [8] Baturin A S, Nikolski K N, Knyazev A I. Technical Physics, 2004, 49 (3): 342-344. [9] Jin F, Liu Y, Day C M, et al. Carbon, 2007, 45 (3): 587-593. [10] Su C Y, Juang Z Y, Chen Y L, et al. Diamond Relat. Mater., 2007, 16 (4-7): 1393-1397. [11] Yi W K, Jeong T W, Yu S G, et al. Adv. Mater., 2002, 14 (23): 1464-1468. [12] Chen Y C, Tsau Y M, Hsieh Y S, et al. Diamond Relat. Mater., 2005, 14 (3-7): 758-762. [13] Kawashima Y, Katagiri G. Phys. Rev. B, 1999, 59 (1): 62-64. [14] Kasuya A, Sasaki Y, Saita Y, et al. Phys. Rev. Lett., 1997, 78 (23): 4434-4437. [15] Li W Z, Zhang H, Wang C Y, et al. Appl. Phys. Lett., 1997, 70 (20): 2684-2686. [16] Kim W S, Lee J, Jeong T W, et al. Appl. Phys. Lett., 2005, 87 (16): 163112. [17] Hiura H, Ebessen T W, Fujita J. Nature, 1994, 367 (6453): 148-151. [18] Obraztsov A N, Volkov A P, Pavlovsky I. Diamond Relat. Mater., 2000, 9 (3-6): 1190-1195. [19] Obraztsov A N, Pavlovsky I, Volkov A P, et al. J. Vac. Sci. Technol. B, 2000, 18 (2): 1059-1062. [20] Dean K A, von Allmen P, Chalamala B R, et al. J. Vac. Sci. Technol. B, 1999, 17 (5): 1959-1969. [21] Zhou G, Duan W, Gu B. Phys. Rev. Lett., 2001, 87 (9): 095504. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%