采用顶部热籽晶技术和“二步冷却”生长工艺, 在空气中制备了Gd-Ba-Cu-O、(SmGd)-Ba-Cu-O和(SmEuGd)-Ba-Cu-O三种体系的单畴熔融织构样品, 并研究了Ar气氛退火(ArPA)对所制备的单畴样品超导性能的影响. 结果表明, 三种体系的单畴样品77K下的俘获场分布均呈中心对称的圆锥形, 其中SEG样品的冻结场达到0.34T(φ18mm), 与OCMG工艺制备的相同尺寸的样品处在同一水平. Ar气氛退火对三种体系单畴样品超导性能的影响不同: 对Gd-Ba-Cu-O体系, ArPA不能进一步提高单畴样品的临界电流密度; 而对(SmGd)-Ba-Cu-O和(SmEuGd)-Ba-Cu-O体系, 合适温度下的ArPA可以大幅度提高样品的超导性能.
Single-grain bulks of Gd-Ba-Cu-O, (SmGd)-Ba-Cu-O and (SmEuGd)-Ba-Cu-O superconductors with high performance were successfully fabricated via two-step cooling method and top-seeded-melt-growth in the ambient atmosphere. The trapped field distributions at 77K were perfect symmetric, and the maximum value of trapped field for (SmEuGd)-Ba-Cu-O sample (φ18mm) reaches 0.34T, which is comparable with that obtained through OCMG method. The effects of post-annealing in Ar (ArPA) are different for the three LRE-Ba-Cu-O systems. For Gd-Ba-Cu-O system, ArPA cannot improve the superconducting properties. For (SmGd)-Ba-Cu-O and (SmEuGd)-Ba-Cu-O systems, however, their superconducting performances can be enhanced by appropriate ArPA treatment.
参考文献
[1] | Murakami M, Sakai N, Higuchi T, et al. Supercond. Sci. Technol., 1996, 9 (12): 1015--1032. [2] Yoo S I, Sakai N, Takachi H, et al. Appl. Phys. Lett., 1994, 65 (8): 633--635. [3] Koblischka M R, van Dalen A J J, Higuchi T, et al. Phys. Rev. B, 1998, 58 (5): 2863--2867. [4] Ikutay H, Masez A, Yanagix Y, et al. Supercond. Sci. Technol., 1998, 11 (10): 1345--1350. [5] Matsui M, Sakai N, Murakami M. Physica C, 2002, 378-381: 732--736. [6] Muralidahar M, Murakami M. Physica C, 2002, 378-381: 627--630. [7] Nariki S, Sakai N, Murakami M. Physica C, 2002, 378-381: 631--635. [8] Salama K, Parikh A S, Woolf L. Appl. Phys. Lett., 1996, 68 (10): 1993--1995. [9] Hu A, Sakai N, Murakami M. Supercond. Sci. Technol., 2002, 15 (5): 675--680. [10] Hu A, Sch\ddot{ atzle P, Bieger W, et al. Appl. Phys. Lett., 1999, 75 (2): 259--261. [11] Hu A, Sakai N, Zhou H, et al. Supercond. Sci. Technol., 2003, 16 (1): 33--38. [12] Hu A, Sakai N, Murakami M. Appl. Phys. Lett., 2001, 78 (17): 2539--2541. [13] Dai J Q, Zhao Z X, Hu A. Physica C, 2004, 406: 63--71. [14] Dai J Q, Zhao Z X, Xiong J W. Supercond. Sci. Technol., 2003, 16 (7): 815--819. [15] Chen D X, Goldfarb R B. J. Appl. Phys., 1989, 66 (10): 2489--2493. [16] Wu H, Dennis K W, Kramer M J, et al. Appl. Supercond., 1998, 6 (5): 87--107. [17] Jirsa M, Pust L, Dlouhy D, et al. Phys. Rev. B, 1997, 55 (15): 3276--3283. [18] Koblischka M R, Muralidhar M, Murakami M. Mater. Eng. Sci., 1999, B65 (1): 58--63. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%