欢迎登录材料期刊网

材料期刊网

高级检索

采用反应射频磁控溅射法在 Si(100)基片上制备了ZrO2薄膜, 通过高分辨电子显微镜、原子力显微镜, 研究了沉积工艺参数(主要包括氧分压和沉积温度)对ZrO2薄膜的表面形貌和微结构的影响. 研究结果显示: 氧分压和沉积温度是影响ZrO2薄膜生长行为的重要因素. 随氧分压的增大, ZrO2薄膜的表面粗糙度近乎呈线形增加的趋势, ZrO2薄膜微结构演化过程是a-ZrO2(非晶)→a-ZrO2和少量m-ZrO2(单斜)→m-ZrO2和少量t-ZrO2(四方)→m-ZrO2; 随沉积温度从室温升高到550℃, ZrO2薄膜微结构演化过程是a-ZrO2(<250℃)→m-ZrO2和少量a-ZrO2(450℃)→m-ZrO2和少量t-ZrO2(550℃); 此外, 根据薄膜微结构和表面形貌的研究结果, 探讨了沉积温度对薄膜生长行为的影响及其物理机制.

Thin films of zirconium oxide were deposited on Si (100) substrates by reactive radio frequency magnetron sputtering. The films were characterized by high-resolution transmission electron microscope (HRTEM) and atomic force microscope (AFM) to investigate the variation of surface morphology and microstructure with oxygen partial pressures and deposition temperatures, respectively. With the increase in oxygen partial pressure ratio from 7% to 100%, the surface roughness approximatively linearly increases, and the phase transition of the films is a-ZrO2 (amorphous)→ a-ZrO2 with a little m-ZrO2 (monoclinic)
→m-ZrO2+t-ZrO2 (tetragonal)→m-ZrO2. For deposition temperatures ranging from room temperature to 550℃, the phase transition of the films is a-ZrO2 (below 250℃)→m-ZrO2 with a little a-ZrO2 (450℃)→m-ZrO2 with a little t-ZrO2 (550℃).
According to the results on the structure and surface morphology of ZrO2 thin films, the dependence of deposition temperature on surface evolution and its physical mechanism are discussed also.

参考文献

[1] Wallace R M. Appl. Surf. Sci., 2004, 231-232: 543--551.
[2] Wilk G D, Wallace R M, Anthony J M. J. Appl. Phys., 2001, 89 (10): 5243--5275.
[3] Garner G M, Kloster G, Atwood G, et al. Microelectronics Reliability, 2005, 45: 919--924.
[4] Chang J P, Lin Y S, Berger S, et al. J. Vac. Sci. Technol. B, 2001, 19 (5): 2137--2143.b
[5] Hausmann D M, Gordon R G. J. Cryst. Growth, 2003, 249: 251--261.
[6] Bellotto M, Caridi A, Cereda E, et al. Appl. Phys. Lett., 1993, 63 (15): 2056--2068.
[7] 阎志军, 王印月, 徐闰, 等(Yan Z J, et al). 物理学报(Acta. Phys. Sin.), 2004, 53 (8): 2771--2774.
[8] Matsuoka M, Lsotani S, Miyake S, et al. J. Appl. Phys., 2000, 88 (6): 3773--3775.
[9] Venkataraj S, Kappertz O, Jayavel R, et al. J. Appl. Phys., 2002, 92 (7): 3599--3607.
[10] Amor S B, Rogier B, Nardin M, et al. Mate. Sci. Eng., 1998, B57: 28--39.
[11] 章宁琳, 宋志堂, 邢溯, 等(Zhang N L, et al). 中国激光(Chinese J. Lasers), 2003, 30 (4): 345--348.
[12] 卢红亮, 徐政, 丁士进, 等(Lu H L, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (5): 1217--1222.
[13] Perkins C M, Triplett B B, Mclntyre P C, et al. Appl. Phys. Lett., 2002, 81 (8): 1417--1419.
[14] Boulouz M, Boulouz A, Giani A, et al. Thin Solid Films, 1998, 323: 85--92.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%