研究了不同煅烧温度对Fe/Mo/Al2O3气凝胶催化剂合成单壁碳纳米管(SWNTs)催化活性的影响. 考察了不同煅烧温度下该催化剂自身的物理化学变化以及催化生长的无定型碳含量, SWNTs的含量、直径及石墨化程度. 研究结果表明: 不同温度的煅烧处理会影响催化剂的表面形态以及Al2O3载体的晶化程度, 进而影响了SWNTs的生长. 600℃煅烧时, 气凝胶催化剂具有最高的活性, 此时催化生长的无定型碳含量仅占粗产品的1.7%, SWNTs的含量高达54.6%, 且合成的SWNTs质量高、管径分布非常均一, 为0.86nm左右.
The influence of calcining temperatures of the Fe/Mo/Al2O3 aerogel catalyst on its catalytic activity for synthesizing single walled carbon nanotubes(SWNTs) was investigated. The main research aspects were the physical and chemical changes of the catalysts under different calcining temperatures, the content of amorphous carbon, and the content and diameter and graphitization degree of SWNTs synthesized by the catalysts. The results show that different calcining temperatures will change the surface morphology of the catalyst and result in the crystallization of the Al2O3 support, which influences the growth of SWNTs. When it is calcined at 600℃, the aerogel catalyst has the highest catalytic activity, the content of amorphous carbon is as low as 1.7%, and the content of SWNTs is as high as 54.6%. SWNTs synthesized by the catalyst in the raw products have high quality, with narrow diameter distribution of about 0.86nm.
参考文献
[1] | Salvetat J P, Briggs G A D, Bonard J M, et al. Phys. Rev. Lett., 1999, 82: 944--947. [2] De Pablo P J, Martinez M T, Colchero J, et al. Mat. Sci. Eng. C, 2001, 15: 149--151. [3] Popov M, Kyotani M, Koga Y. Diam. Relat. Mater., 2003, 12: 833--839. [4] Zuttel A, Sudan P, Mauron Ph, et al. Int. J. Hydrogen Ener., 2002, 27: 203--212. [5] Yahachi S, Sashiro U. Carbon, 2000, 38: 169--182. [6] Kong J, Franklin N R, Zhou C W, et al. Science, 2000, 287: 622--625. [7] 钟蓉, 丛洪涛, 成会明, 等. 材料研究学报, 2002, 16: 344--348. [8] Journet C, Maser W K, Berner P, et al. Nature, 1997, 388: 756--758. [9] Thess A, Lee R, Nikolaev P, et al. Science, 1996, 273: 483--487. [10] 李昱, 张孝彬, 徐军明, 等(LI Yu, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 71--76. [11] Cassell A M, Raymakers J A, Kong J. J. Phys. Chem. B, 1999, 103: 6484--6492. [12] Su M, Zheng B, Liu J. Chem. Phys. Lett., 2000, 322: 321--326. [13] Tang S, Zhong Z, Xiong Z, et al. Chem. Phys. Lett., 2001, 350: 19--26. [14] Jing K, Cassella A M, Dai H. Chem. Phys. Lett., 1998, 292: 567--574. [15] Mehn D, Fonseca A, Bister G, et al. Chem. Phys. Lett., 2004, 393: 378--384. [16] 罗君航, 张孝彬, 李昱, 等. (LUO Junhang, et al). 无机材料学报 (Journal of Inorganic Materials), 2005, 20 (6): 1358--1362. [17] Kitiyanan B, Alvarez W E, Harwell J H, et al. Chem. Phys. Lett., 2000, 317: 497--503. [18] Ruoff R S, Tersoff J, Lorents D C, et al. Nature, 1993, 364: 514--516. [19] Bandow S, Asaka S, Saito Y, et al. Phys. Rev. Lett., 1998, 80: 3779--3782. [20] Bachilo S M, Strano M S, Kittrell C, et al. Science, 2002, 298: 2361--2366. [21] Dresselhaus M S, Eklund P C. Adv. Phys., 2000, 49: 705--814. [22] Dai H, Rinzler A G, Nikolaev P, et al. Chem. Phys. Lett., 1996, 260: 471--475. [23] 李承烈, 李贤均, 张国泰. 催化剂失活. 北京: 化学工业出版社, 1989. 36--37. [24] 陆常德译. 催化剂在使用过程中活性的变化, 北京: 化学工业出版社, 1892. 33--34. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%