以MTS为先驱体原料, 在950~1300℃、负压条件下沉积了CVD SiC涂层. 利用SEM对涂
层的表面形貌和断口特征进行了表征. 沉积温度和SiC涂层表面形貌的关系如下: 950℃时, 沉积的SiC颗粒非常细小, 为独立的球形堆积; 1000~1100℃时, CVD SiC涂层表面光滑、致密; 1150~1300℃沉积的SiC涂层呈现出球状或瘤状结构且表面粗糙. 结合热力学和晶体形核-长大理论, 研究了沉积温度对SiC涂层表面形貌的作用机制. 沉积温度和SiC涂层断口形貌的关系如下: 1200℃以下沉积的SiC涂层断面致密、无孔洞; 而1300℃沉积的SiC涂层断面非常疏松. 利用岛状生长模型揭示了SiC涂层内部显微结构的形成机理.
The coatings of SiC were prepared from the methyltrichlorosilane (MTS) by low pressure chemical vapor deposition from 950℃ to 1300℃. SEM was used to characterize the surface and cross-sectional morphologies of the as deposited coatings. The effects of temperature on the microstructures of SiC coatings were investigated. At 950℃, the as-deposited SiC coating is loose and the grains of the coating are fine. In the temperature range of 1000-1100℃, CVD SiC coatings show a dense and smooth surface morphology. However, in the temperature range of 1150-1300℃, the surface morphology of SiC coatings changes to rounded hillocks and the as-deposited coatings are very rough. Factors influencing the surface morphologies and structures of SiC coatings were studied through thermodynamics and nucleation-growth theory. The relationship between deposition temperature and SiC coatings’ cross-sectional morphologies can by listed as follows, the as deposited coatings are very dense and there are no holes when the deposition temperature is lower than 1200℃, however, the as deposited coatings become very loose at 1300℃. The inside structures of SiC coatings were interpreted by the island growth
model.
参考文献
[1] | Goela J S, Pichering M A, Cohen L M. Proc SPIE, 1999, 3766: 338--349. [2] Ozaki T, Kume M, Oshima T. Proc SPIE, 2005, 5868: H01--H07. [3] Claus Muller, Ulrich Papenburg. Proc SPIE, 2001, 4198: 249--259. [4] Zhang Weigang, Klaus G, Huttinger J. Chemical Vapor Deposition, 2001, 7 (4): 167--172. [5] Xu Y, Cheng L, Zhang L. Journal of Materials Science, 1999, 34: 551--555. [6] 刘荣军, 张长瑞, 周新贵, 等(LIU Rong-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 425--429. [7] Byung Jin Chou, Dair Yong Kim. Journal of Materials Science Letters, 1991, 10: 860--862. [8] 肖鹏, 徐永东, 黄伯云(XIAO Peng, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (4): 877--880. [9] Tsai Ching Yi, et al. Journal of Materials Research, 1994, 9 (1): 104--111. [10] 刘荣军, 张长瑞, 周新贵, 等(LIU Rong-Jun, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2003, 31 (11): 1107--1111. [11] 姚连增. 晶体生长基础. 合肥: 中国科学技术大学出版社, 1995. 258--268. [12] 唐伟忠. 薄膜材料制备原理、技术及应用, 第1版. 北京: 冶金工业出版社, 1998. 91--95. [13] 谈慕华, 黄蕴元. 表面物理化学. 北京: 中国建筑工业出版社, 1985. 128--133. [14] Lespiaux D, Langlais F, Naslain R. Journal of Materials Science, 1995, 30: 1500--1510. [15] 郑伟涛. 薄膜材料与薄膜技术. 北京: 化学工业出版社, 2004. 155--167. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%