通过TC18钛合金热模拟压缩实验,得到不同变形条件下的高温变形真应力-真应变曲线.通过加工硬化和动态软化效应,分析变形参数变化对TC18钛合金应力-应变曲线形态和峰值应力的影响.不同变形条件下,TC18钛合金流变曲线呈现出相似的特征,而峰值应力对变形参数的变化却十分敏感.通过Poliak-Jonas准则,分析了不同条件下TC18钛合金在高温变形过程中的软化机制.相同温度下,动态再结晶机制主要发生在低应变速率下的高温变形过程中,并且软化机制的选择对温度不敏感.基于传统的Arrhenius型方程,针对TC18钛合金热变形过程中不同的软化机制,分别建立动态再结晶和动态回复机制下的本构方程.针对识别出的TC18合金在不同变形条件下的软化机制,通过适用的本构模型来描述TC18合金在应变为0.7时真实应力对变形温度、应变速率的响应过程.以动态再结晶为主要软化机制的变形过程,其变形激活能和应变速率敏感系数远远大于以动态回复为主的过程.
参考文献
[1] | Moiseyer V N.Titanium Alloys-Russian Aircraft and Aerospace Applications.London:Taylor & Francis Group,2005:46 |
[2] | Semiatin S L,Seetharaman V,Weiss I.Mater Sci Eng,1999; A263:257 |
[3] | Bruschi S,Poggio S,Quadrini F.Mater Lett,2004; 58:3622 |
[4] | Sumantra M,Rakesh V,Sivaprasad P V.Mater Sci Eng,2007;A500:114 |
[5] | Cui J H,Yang H,Sun Z C.Rare Metall Mater Eng,2012; 41:0397 |
[6] | Li X L.PhD Dissertation,Northwestern Polytechnieal University,Xi'an,2005(李晓丽.西北工业大学博士学位论文,西安,2005) |
[7] | Sha W,Savko M.Titanium Alloys:Modelling of Microstructure,Properties and Applications.Cambridge:Woodhead Publishing,2009:265 |
[8] | Jia B,Peng Y.Acta Metall Sin,2011; 47:507(贾斌,彭艳.金属学报,2011;47:507) |
[9] | Zhang W F,Li X L,Sha W,Yan W,Wang W,Shan Y Y,Yang K.Mater Sci Eng,2014; A590:199 |
[10] | Roberts W,Ahlblom B.Acta Metall,1978; 26:801 |
[11] | Humphreys F J,Hatherly M.Recrystallization and Related Annealing Phenomena.2nd Ed.,Oxford:Elsevier,2004:431 |
[12] | Wang B,Guo H Z,Yao Z K.Forg Stamp Technol,2006; (6):106(王斌,郭鸿镇,姚泽坤.锻压技术,2006; (6):106) |
[13] | Ouyang D L,Lu S Q,Cui X.J Aero Mater,2010; 30(2):17(欧阳德来,鲁世强,崔霞.航空材料学报,2010; 30(2):17) |
[14] | Fernández A I,Uranga P,López B,Rodriguez-Ibabe J M.Mater Sci Eng,2003; A361:367 |
[15] | Taylor A S,Hodgson P D.Mater Sci Eng,2011; A528:3310 |
[16] | McQueen H J,Sue Y,Ryan N D,Fry E J.Mater Process Technol,1995; 53:293 |
[17] | Poliak E I,Jonas J J.Acta Mater,1996; 44:127 |
[18] | Miura H,Sakai T,Mogawa R,Gottstein G.Scr Mater,2004; 51:671 |
[19] | Chen X R,Li H X,Ge M Q,Chen Y H,Hu Y S.Acta Metall Sin,1997; 33:1275(程晓茹,李虎兴,葛懋琦,陈贻宏,胡衍生.金属学报,1997;33:1275) |
[20] | Galindo-Nava E I,Rivera-Diaz-del-Castillo P E J.Scr Mater,2014; 72-73:1 |
[21] | Sellars C M,Tegart W J M.Mem Sci Rev Met,1966; 63:731 |
[22] | Gottstein G,Kocks U F.Acta Meter,1983; 31:175 |
[23] | Mahoney M W.Materials Properties Handbook:Titanium Alloys.Materials Park:ASM International,1994:154 |
[24] | Gottstein G,Shvindlerman L S.Grain Boundary Migration in Metals.Boca Raton:CRC Press,2010:211 |
[25] | Mao P L,Yang K,Su G Y.Acta Metall Sin,2001; 37:40(毛萍莉,杨柯,苏国跃.金属学报,2001; 37:40) |
[26] | Sellars C M,Whiteman J A.Acta Meter,1979; 13:187 |
[27] | Sargent P M,Ashby M F.Scr Mater,1982; 16:1415 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%