为了获得合金静态再结晶前的变形晶粒组织,应用网格畸变模型与相场模型结合,生成变形合金再结晶前的初始晶粒组织;针对合金不同变形区域的特征和体系储存能分布不均匀的特点,分别引入反映不同变形区域的储存能分布的权重因子和变形区域的特征状态因子,构造多状态的非均匀自由能密度函数.在此基础上,应用相场动力学方程模拟了AZ31镁合金的静态再结晶过程的微结构演化,系统地分析了再结晶转变动力学曲线和Avrami曲线,以及储存能释放规律和再结晶晶粒尺度分布.模拟得到的动力学规律符合JMAK理论,所得的Avrami曲线可近似看成一条直线,对应于真应变ε=0.25,0.50,0.75和1.00,该直线的平均斜率分别为2.45,2.35,2.19和2.15.Avrami时间指数随变形量的增加而降低.变形程度大的合金,储存能释放的速度快,完成静态再结晶所需的时间短.基于本文提出的模型,结合相场方法计算模拟所得的结果与已有的理论结果和实验结果符合良好.
参考文献
[1] | Mordike B L,Ebert T.Mater Sci Eng,2001; A302:37 |
[2] | Hakamada M,Furuta T,Chino Y,Chen Y Q,Kasuda H,Mabuchi M.Energy,2007; 32:1352 |
[3] | Kancko T,Suzuki M.Mater Sci Forum,2003; 419-422:67 |
[4] | Agnew S R,Senn J W,Horton J.JOM,2006; 58:62 |
[5] | Humphreys F J,Hatherly M.Recrystallization and Related Annealing Phenomena,Oxford,Elsevier Science,1995:1 |
[6] | Doherty R D,Hughes D A,Humphreys F J,Jonas J J,Jensen D J,Kassner M E,King W E,McNelley T R,McQueen,Rollett A D.Mater Sci Eng,1997; A238:219 |
[7] | Liss K D,Garbe U,Li H J,Thomas S,Jonathan D A,YanK.Adv Eng Mater,2009; 11:637 |
[8] | Song X Y,Rettenmayr M.Mater Sci Eng,2002; A332:153 |
[9] | Walasek T A.J Mater Process Technol,2004; 157-158:262 |
[10] | Chun Y B,Semiatin S L,Hwang S K.Acta Mater,2006;54:3673 |
[11] | Guan X J,Zhang J X,Sun S.Special Steel.2004; 25(3):34 (关小军,张继详,孙胜.特殊钢,2004,25(3):34) |
[12] | Zhang J X.PhD Thesis,Shandong University,Jinan,2006 (张继详.山东大学博士学位论文,济南,2006) |
[13] | Kazeminezhad M.Mater Sci Eng,2008; A486:202 |
[14] | Lu Y,Zhang L W,Deng X H,Pet J B,Wang S,Zhang G L.Acta Metall Sin,2008; 44:292 (卢瑀,张立文,邓小虎,裴继斌,王赛,张国梁.金属学报,2008;44:292) |
[15] | Mukhopadhyay P,Loeck M,Gottstein G.Acta Mater,2007,55:551 |
[16] | Zheng C W,Xiao N M,Li D Z,Li Y Y.Comput Mater Sci,2008; 44:507 |
[17] | Xiao N M,Zheng C W,Li D Z,Li Y Y.Comput Mater Sci,2008,41:366 |
[18] | Guo J,Wang Y M,Li W,Wu D,Zhao X M.Heavy Cast Forg,2009; 1:20 (郭娟,王艳梅,李卫,吴迪,赵宪明.大型铸锻件,2009;1:20) |
[19] | Chen L Q,Yang W.Phys Rev,1994; 50B:15752 |
[20] | Fan D,Chen L Q.Acta Mater,1997; 45:611 |
[21] | Moelans N,Blanpain B,Wollants P.Acta Mater,2006; 54:1175 |
[22] | Suwa Y,Saito Y.Scr Mater,2006; 55:407 |
[23] | Gao Y J,Zhang H L,Jin X,Huang C G,Luo Z R.Acta Metall Sin,2009; 45:1190 (高英俊,张海林,金星,黄创高,罗志荣.金属学报,2009;45:1190) |
[24] | Vedantam S,Mallick A.Acta Mater,2010; 58:272 |
[25] | Suwa Y,Saito Y,Onodera H.Mater Sci Eng,2007; A457:132 |
[26] | Suwa Y,Saito Y,Onodera H.Comput Mater Sci,2008;44:286 |
[27] | Takaki T,Yamanaka A,Higa Y,Tomita Y.J ComputerAided Mater Des,2007; 14:75 |
[28] | Wang M T,Zong B Y,Wang G.Comput Mater Sci,2009;45:217 |
[29] | Takaki T,Hirouchi T,Hisakuni Y,Yamanaka A,TomitaY.J Crystal Growth,2008; 310:2248 |
[30] | Li Y L,Chen L Q.Appl Phys Lett,2006; 88:072905 |
[31] | Wang Y U.Acta Mater,2006; 54:953 |
[32] | Li W,Gao L.Scr Mater,2001; 44:2269 |
[33] | Guyer J E,Boittinger W J.Phys Rev,2004; 69E:021603 |
[34] | Ramanarayan H,Abinandanan T A.Acta Mater,2004;52:921 |
[35] | Sreekala S,Haataja M.Phys Rev,2007; 76B:094109 |
[36] | Cahn R W.Materials Science and Technology,Vol.15,Beijing:Science Press,1999:360 (R W 卡恩主编.材料科学与技术丛书(第15卷),北京:科学出版社,1999:360) |
[37] | Oono Y,Port S.Phys Rev Lett,1987; 58:836 |
[38] | Zheng C W,Lan Y J,Xiao N M,Li D Z,Li Y Y.Acta Metall Sin,2006; 42:474 (郑成武,兰永军,肖纳敏,李殿中,李依依.金属学报,2006;42:474) |
[39] | Ye W P,Gall R L,Saindrenan G.Mater Sci Eng,2002; A332:41 |
[40] | Liu R C,Wang L Y,Gu L G,Huang G S.Light Alloy Fabric Technol,2004; 32:22 (刘饶川,汪凌云,辜蕾钢,黄光胜.轻合金加工技术,2004;32:22) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%