利用Fe-Mn-Si基合金凝固过程中固态转变残留的条状δ铁素体对奥氏体晶粒进行区域化分割,实现应力诱发ε马氏体的区域化形成,提高了合金的形状记忆效应,根据Hammar铬镍当量公式制备了铬镍当量比为1.85的铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金.利用OM和VSM(振动样品磁强计)研究了合金的室温组织和磁性能,结果表明,在铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金的室温组织中获得了条状δ铁素体.这些条状δ铁索体将奥氏体晶粒分割成了若干小区域,变形时能约束不同区域应力诱发ε马氏体的扩展,使其以区域化的方式形成.由于应力诱发ε马氏体的区域化形成减少了不同区域马氏体之间的碰撞,在未经任何处理的铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金中获得了4.9%的可恢复变形量.
Low cost Fe-Mn-Si based shape memory alloys (SMAs) has not got widely applica tions because of their poor shape memory effect (SME) and the need of thermo-mechanical training,so developing training-free Fe-Mn-Si based SMAs with high memory property is significant. In the present study, it was put forth that the formation of stress-induced εmartensite in a domain manner could improve the SME of Fe-Mn-Si based SMAs and it could be realized through subdividing austenite γ grains into smaller domains using the residual lathy δ ferrite phase. According to Hammar's equivalents, a cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy with Cr/Ni equivalent ratio of 1.85 was prepared. OM and VSM (vibrating sample magnetometer) examination showed that the as-cast microstructure consists of γ austenite and lathy δ ferrite phase, and the lathy δ ferrite subdivided the austenite grains into smaller domains, which makes the stress-induced ε martensite bands form in a domain manner. Because the collisions between domain-like martensite bands were reduced, a high recovery strain of 4.9% was attained in the as-cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy. This result provides a novel way of developing training-free Fe-Mn-Si based SMAs. It can be expected that the SME of cast Fe-Mn-Si based SMAs will be further improved through modifying and optimizing alloy compositions:solidification parameters and heat treatment process.
参考文献
[1] | Sato A,Chishima E,Soma K,Mori T.Acta Metall Mater,1982; 30:1177 |
[2] | Sato A,Chishima E,Soma K,Mori T.Acta Metall Mater,1984; 32:539 |
[3] | Sato A,Yamaji Y,Mori T.Acta Metall Mater,1986; 34:287 |
[4] | Otsuka H,Yamada H,Maruyama T,Tanahashi H,Matsuda S,Murakami M.ISIJ Int,1990; 30:674 |
[5] | Yang J H,Chen H,Wayman C M.Metall Mater Trans,1992; 23A:1431 |
[6] | Inagaki H.Z Metall,1992; 83:90 |
[7] | Wang X X,Zhao L C.Scr Mater Metall,1992; 26:1451 |
[8] | Wang D F,Chen Y R,Gong F Y,Liu D Z,Liu W X.J Phys France IV,1995; 5:527 |
[9] | Kajiwara S.Mater Sci Eng,1999; A273-275:67 |
[10] | Matsumura O,Furusako S,Sumi T,Furukawa T,Otsuka H.Mater Sci Eng,1999; A272:459 |
[11] | Sato A,Masuya T,Morishita M,Kumai S,Inoue A.Mater Sci Forum,2000; 327-328:223 |
[12] | Wang D F,Liu D Z,Dong Z Z,Liu W X,Chen J M.Mater Sci Eng,2001; A315:174 |
[13] | Wen Y H,Yan M,Li N.Scr Mater,2004; 50:835 |
[14] | Wen Y H,Yan M,Li N.Scr Mater,2004; 50:441 |
[15] | Baruj A,Kikuchi T,Kajiwara S,Shinya N.Mater Sci Eng,2004; A378:333 |
[16] | Farjami S,Hiraga K,Kubo H.Acta Mater,2005; 53:419 |
[17] | Wen Y H,Zhang W,Li N.Acta Metall Sin,2006; 42:1217(文玉华,张伟,李宁.金属学报,2006; 42:1217) |
[18] | Wen Y H,Zhang W,Li N,Peng H B,Xiong L R.Acta Mater,2007; 55:6526 |
[19] | Wen Y H,Xiong L R,Li N,Zhang W.Mater Sci Eng,2008; A474:60 |
[20] | Yang J H,Wayman C M.Acta Metall Mater,1992; 40:2011 |
[21] | Inagaki H.Z Metall,1992; 83:97 |
[22] | Inagaki H.Z Metall,1992; 83:304 |
[23] | Suutala N,Takalo T,Moisio T.Metall Mater Trans,1979;10A:512 |
[24] | Leone G L,Kerr H W.Weld J,1982; 61:13 |
[25] | Suutala N.Metall Mater Trans,1982; 13A:2121 |
[26] | Stanford N,Dunne D P.J Mater Sci,2006; 41:4883 |
[27] | Bergeon N,Guenin G,Esnouf C.Mater Sci Eng,1998;A242:77 |
[28] | Gu Q,Humbeeck J V,Delaey L.J Phys France IV,1994; 4:135 |
[29] | Folkhard E.Welding Metallurgy of Stainless Steel.Wien:Springer-Verlag,1988:39 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%